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Abstract: We find three necessary and sufficient conditions for an n-dimensional compact Ricci
almost soliton (M, g, w, σ) to be a trivial Ricci soliton under the assumption that the soliton vector
field w is a geodesic vector field (a vector field with integral curves geodesics). The first result uses
condition r2 ≤ nσr on a nonzero scalar curvature r; the second result uses the condition that the
soliton vector field w is an eigen vector of the Ricci operator with constant eigenvalue λ satisfying
n2λ2 ≥ r2; the third result uses a suitable lower bound on the Ricci curvature S(w, w). Finally, we
show that an n-dimensional connected Ricci almost soliton (M, g, w, σ) with soliton vector field w is
a geodesic vector field with a trivial Ricci soliton, if and only if, nσ− r is a constant along integral
curves of w and the Ricci curvature S(w, w) has a suitable lower bound.

Keywords: Ricci soliton; Ricci almost soliton; Einstein manifolds; trivial Ricci soliton
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1. Introduction

Given a Riemannian manifold (M, g), the sectional curvature distributions divide
the manifold into three portions, one where sectional curvatures are positive, another
where sectional curvatures are negative and the third, where sectional curvatures are zero.
Hamilton, in his quest to solve Poincare conjecture, realized the role of a heat equation
that evenly distributes temperature on the region, and considered a heat equation for the
evolving metric known as Ricci flow, for an excellent description on this topic, we refer
to (cf. [1,2]). A Ricci flow on a Riemannian manifold (M, g) is the following PDE for the
evolving metric gt

∂gt

∂t
= −2S(gi), t ∈ [0, T],

where S(gi) is the Ricci tensor of the metric gt. A stable solution of the above Ricci flow
of the form gt = f (t)ψ∗t (g) with initial condition g0 = g is called a Ricci soliton, where ψt
are diffeomorphisms of M and f (t) is the scaling function, ψ0 = id, f (0) = 1. In [3], the
authors considered the stable solution of the Ricci flow of the form gt = f (t, x)ψ∗t (g) (that
is, allowing the scaling function to be a function of both time t and the local coordinates on
M) and called the solution Ricci almost soliton. In [2], the authors introduced the notion
of Riemann flow on a Riemannian manifold (M, g) as the following PDE for the evolving
metric gt

∂Gt

∂t
= −2R(gi), t ∈ [0, T].

where Gt is (0, 4)-tensor field defined by

Gt(X, Y; Z, W) = g(Y, Z)g(X, W)− g(X, Z)g(Y, W)

and R(gi) is the Riemann curvature tensor field of the metric gt. The stable solution of
the Riemann flow with initial condition g0 = g is called the Riemann soliton, which is an
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interesting generalization of the Ricci soliton and is a current topic of research, for details
see [2].

A Ricci almost soliton is a Riemannian manifold (M, g) that admits a smooth vector
field w, satisfying

1
2

£wg + S = σg, (1)

where £wg is the Lie differentiation of the metric g with respect to w, S is the Ricci tensor
and σ is a smooth function on M. We denote a Ricci almost soliton by (M, g, w, σ). The
notion of Ricci almost soliton is introduced in (cf. [3]) in an attempt to generalize Ricci
solitons, by replacing the soliton constant with the smooth function σ. Geometry of Ricci
solitons and Ricci almost solitons has been subject of immense interest due to their elegant
geometry as well as applications (cf. [1,3–15]). Given a Ricci almost soliton (M, g, w, σ), we
call w the soliton vector field and the smooth function σ the potential function. A Ricci almost
soliton (M, g, w, σ) is said to be trivial if it is a Ricci soliton, that is, the potential function σ
is a constant and a Ricci soliton is trivial if the soliton vector field is Killing. For examples
of compact and non-compact non-trivial Ricci almost solitons, we refer to [3,4].

Recall that a Ricci soliton is a generalization of an Einstein manifold and a Ricci almost
soliton is a generalization of a Ricci soliton. Note that if the soliton vector field w of a Ricci
almost soliton is Killing and dim M > 2, then a Ricci almost soliton is a trivial Ricci soliton.
In the geometry of a Ricci almost soliton, there are two important questions, the first one is
to find conditions under which it is a trivial, that is, it is a Ricci soliton and the other is to
find conditions under which it is a trivial Ricci soliton, that is, the soliton vector field w
is Killing. A Ricci almost soliton could be an Einstein manifold without being trivial, as
suggested by the example (Sn(c), g, w, σ), where Sn(c) is the sphere of constant curvature
c and w = grad h for some smooth function on the sphere (cf. [4,11]). In [11], the author
has proved a necessary and sufficient condition for a Ricci almost soliton (M, g, w, σ) to be
a Ricci soliton, is that the soliton vector field w is an infinitesimal harmonic transformation.
In [12], the author has proved that a Ricci almost soliton (M, g, w, σ) is a Ricci soliton if
and only if, the soliton vector field w satisfies �w = 0, where � is the de-Rham Laplace
operator. Similarly in [10], several results are proved in finding conditions under which a
compact Ricci almost soliton is a trivial Ricci soliton.

Recall that the integral curves of a Killing vector field of constant length are geodesics.
However, a vector field that has all its integral curves geodesics (a geodesic vector field)
need not be Killing; for instance, the Reeb vector field on a trans-Sasakian manifold (cf. [16])
or the Reeb vector field on a Kenmotsu manifold (cf. [17]). For properties of geodesic vector
fields, we refer to [18]. In this article, we impose the condition on the soliton vector field w
of a Ricci almost soliton (M, g, w, σ) to be a geodesic vector field and analyze the situations
under which it is either a Ricci soliton or a trivial Ricci soliton. It should be mentioned that
in [12], geodesic vector fields are used in a different context.

Let (M, g, w, σ) be an n-dimensional Ricci almost soliton, we denote by S the Ricci
tensor and by r the scalar curvature of (M, g, w, σ). In this paper, we show that for
a compact (M, g, w, σ) with w a geodesic vector field and nonzero scalar curvature r
satisfying r2 ≤ nσr is necessary and sufficient to be trivial (cf. Theorem 1). Similarly, we
show that if a compact (M, g, w, σ) with w a geodesic vector field satisfies Q(w) = λw for
a constant λ with r2 ≤ n2λ2, if and only if, it is a trivial Ricci soliton (cf. Theorem 2). We
also, show that if a compact (M, g, w, σ) with w a geodesic vector field has an appropriate
lower bound for the Ricci curvature in the direction of w, if and only if, it is trivial (cf.
Theorem 3). Finally, we show that for a connected (M, g, w, σ) with w a geodesic vector
field and Ricci curvature S(w, w) has certain lower bound and the function nσ − r is a
constant on integral curves of w if and only if (M, g, w, σ) is a trivial Ricci soliton (cf.
Theorem 4).
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2. Preliminaries

On an n-dimensional Ricci almost soliton (M, g, w, σ), we denote by X(M) the Lie
algebra of smooth vector fields on M and by ∇X , X ∈ X(M) the covariant derivative with
respect to X. The curvature tensor field of Ricci almost soliton (M, g, w, σ) is given by

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z, X, Y, Z ∈ X(M)

and the Ricci tensor S of (M, g, w, σ) is given by

S(X, Y) =
n

∑
i=1

g(R(ei, X)Y, ei),

where {e1, . . . , en} is a local orthonormal frame. Note that the Ricci tensor S and the Ricci
operator Q defined by S(X, Y) = g(QX, Y), are both symmetric. The scalar curvature r of
the Ricci almost soliton (M, g, w, σ) is given by r = TrQ and its gradient gradr satisfies

1
2

grad r =
n

∑
i=1

(∇Q)(ei, ei), (2)

where {e1, . . . , en} is a local orthonormal frame and (∇Q)(X, Y) = ∇XQY−Q(∇XY).
Let β be the 1-form dual to soliton vector field w. Then, we define a skew symmetric

operator F by
1
2

dβ(X, Y) = g(FX, Y). (3)

We call the operator F the associated operator of the Ricci almost soliton (M, g, w, σ).Then,
using Equations (1) and (3) and Koszul’s formula (cf. [8]), we have

∇Xw = σX−Q(X) + FX, X ∈ X(M). (4)

Using Equation (4), for the Ricci almost soliton (M, g, w, σ), we have

R(X, Y)w = X(σ)Y−Y(σ)X− (∇Q)(X, Y) + (∇Q)(Y, X)

+ (∇F)(X, Y)− (∇F)(Y, X). (5)

On using Equation (2) and symmetry of Q and skew-symmetry of F in above equation,
we conclude

S(Y, w) = −(n− 1)Y(σ) +
1
2

Y(r)−
n

∑
i=1

g(Y, (∇F)(ei, ei)). (6)

Thus, we have

Q(w) = −(n− 1)∇σ +
1
2

grad r−
n

∑
i=1

(∇F)(ei, ei), (7)

Using Equation (4), we compute

div w = (nσ− r). (8)

The divergence of the vector field Fw is given by

div F w = −‖F‖2 −
n

∑
i=1

g(w, (∇F)(ei, ei), (9)
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where the squared norm ‖F‖2 is

‖F‖2 =
n

∑
i=1

g(Fei, Fei)

and we have used the symmetry and skew-symmetry of the operators Q and F to conclude

n

∑
i=1

g(Fei, Qei) = 0. (10)

Using Equation (9), we get the following.

Lemma 1. Let (M, g, w, σ) be an n-dimensional compact Ricci almost soliton with associated
operator F. Then, for a local orthonormal frame {e1, . . . , en} on M

∫
M

{
‖F‖2 +

n

∑
i=1

g(w, (∇F)(ei, ei)

}
= 0.

Using Equation (1), for an n-dimensional Ricci almost soliton (M, g, w, σ), we have

1
2

£wg = σg− S

and for a local orthonormal frame {e1, . . . , en}, we have

1
4
|£wg|2 =

n

∑
i,j=1

(
(£wg)(ei, ej)

)2
= nσ2 + ‖Q‖2 − 2σr.

Thus, we have the following.

Lemma 2. Let (M, g, w, σ) be an n-dimensional Ricci almost soliton. Then

1
4
|£wg|2 =

(
‖Q‖2 − r2

n

)
+

1
n
(nσ− r)2.

3. Ricci Almost Solitons with Geodesic Soliton Vector Field

Let (M, g, w, σ) be an n-dimensional Ricci almost soliton. We use the notion of
geodesic vector field used in [18] to find necessary and sufficient conditions for a Ricci
almost soliton to be a trivial Ricci soliton. Recall that if the potential function σ is a constant,
then a Ricci almost soliton becomes a Ricci soliton and in addition, if the soliton vector
field is a Killing vector field and n > 2, then the Ricci almost solitons is a trivial Ricci
soliton, that is, an Einstein manifold. Note that with w being a geodesic vector field, that is,
integral curves of w are geodesics, equivalently ∇ww = 0 is too far from w being a Killing
vector field. On one hand, if a Killing vector field ξ on a Riemannian manifold (M, g) is
not of constant length, then ∇ξ ξ 6= 0. On the other hand, there are examples of unit vector
fields which are geodesic vector fields and are not Killing vector fields. For instance, the
Reeb vector field ξ of a Trans-Sasakian manifold or a Kenmotsu manifold (also of a nearly
Sasakian manifold) is a geodesic vector field that is not Killing (cf. [11,16]). In this section,
we set the condition on the soliton vector field w of the Ricci almost soliton (M, g, w, σ)
to be a geodesic vector field and find additional conditions so that (M, g, w, σ) becomes a
trivial Ricci soliton.

Let the soliton vector field w of Ricci almost soliton (M, g, w, σ) be a geodesic vector
field. Then, we have

∇ww = 0 (11)
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and the Equation (4), gives
Q(w) = σw + Fw. (12)

Theorem 1. Let (M, g, w, σ) be an n-dimensional compact Ricci almost soliton, n > 2, with
nonzero scalar curvature r and soliton vector field w a geodesic vector field. Then, (M, g, w, σ) is a
trivial Ricci soliton of nonzero scalar curvature, if and only if, r2 ≤ nσr.

Proof. Assume that w is a geodesic vector field. Then, taking covariant derivative in
Equation (12) with respect to X ∈ X(M) and using Equation (4), we obtain

(∇Q)(X, w) + Q(σX−Q(X) + FX) = σ(σX−Q(X) + FX) + (∇F)(X, w)

+X(σ)w + F(σX−Q(X) + FX).

Using a local orthonormal frame {e1, . . . , en} and taking X = ei in the above equation
and then taking the inner product with ei and summing, we conclude

1
2

w(r) + σr− ‖Q‖2 = w(σ) + nσ2 − σr−
n

∑
i=1

g(w, (∇F)(ei, ei)− ‖F‖2,

where we have used Equations (2) and (10) and symmetry, skew-symmetry of the operators
Q and F respectively. Integrating the above equation and using Lemma 1, we obtain∫

M

(
w
(

1
2

r− σ

)
+ 2σr− nσ2 − ‖Q‖2

)
= 0. (13)

Now, using Equation (8) and div( f X) = X( f ) + f div(X), we have

div
(
(

1
2

r− σ)w
)
= w

(
1
2

r− σ

)
+

(
1
2

r− σ

)
(nσ− r),

inserting the above equation into Equation (13), we arrive at∫
M

(
−
(

1
2

r− σ

)
(nσ− r) + 2σr− nσ2 − ‖Q‖2

)
= 0.

Thus, we have∫
M

(
1
n

r2 − ‖Q‖2
)
=
∫

M

((
1
n
− 1

2

)
r2 +

(n
2
− 1
)

σr
)

,

that is, ∫
M

(
1
n

r2 − ‖Q‖2
)
=

n− 2
2n

∫
M

(
nσr− r2

)
. (14)

Now, using the Schwarz’s inequality ‖Q‖2 ≥ r2

n and the condition in the hypothesis
r2 ≤ nσr in the above equation, we conclude, ‖Q‖2 = r2

n and this equality holds, if and
only if,

Q =
r
n

I. (15)

Thus, the Equation (14) implies

n− 2
2n

∫
M

(
nσr− r2

)
= 0
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and as n > 2 and r2 ≤ nσr, the above equation implies r2 = nσr. Moreover, as n > 2,
Equation (15) implies that the nonzero scalar curvature r is constant. This proves r = nσ
and joining this conclusion together with Equation (15) and Lemma 2, we obtain

£wg = 0

with σ = r
n a constant. Hence, (M, g, w, σ) is a trivial Ricci soliton. The converse is trivial,

as we could choose w = 0 on an Einstein manifold with nonzero scalar curvature.

Theorem 2. Let (M, g, w, σ) be an n-dimensional compact and connected Ricci almost soliton
, n > 2, with soliton vector field w a geodesic vector field. Then, Q(w) = λw for a constant λ
satisfying n2λ2 ≥ r2, if and only if, (M, g, w, σ) is a trivial Ricci soliton.

Proof. Suppose that w is a geodesic vector field with Q(w) = λw, for a constant λ
satisfying n2λ2 ≥ r2. Using Equation (12), we get (λ− σ)w = Fw and taking the inner
product with w, we have

(λ− σ)‖w‖2 = 0.

Then, on connected M, we have either w = 0 or σ = λ. If w = 0, as n > 2, we get that
(M, g, w, σ) is a trivial Ricci soliton. Thus, we shall concentrate on the case σ = λ, which
makes (M, g, w, σ) a Ricci soliton. Now, since a compact Ricci soliton is a gradient Ricci
soliton (cf. [1]), that is, the soliton vector field w is the gradient of a smooth function and as
such it is closed, which implies F = 0. Then, Equation (7) takes the form Q(w) = 1

2 grad r
and we have

λw =
1
2

grad r. (16)

We use Equations (4) and (16) to compute the Hessian operator Hr given by

Hr(X) = ∇X grad r = 2λ(λX−Q(X)), X ∈ X(M). (17)

The Laplacian of r is computed using Equation (8) and we obtain

∆r = div(grad r) = 2λ(nσ− r) = 2λ(nλ− r). (18)

Equation (17) implies

‖Hr‖2 = 4λ2
(

nλ2 + ‖Q‖2 − 2λr
)

. (19)

Using the Bochner’s formula∫
M

(
S(grad r, grad r) + ‖Hr‖2 − (∆r)2

)
= 0

and Equations (16), (18) and (19), we have∫
M

(
S(w, w) + nλ2 + ‖Q‖2 − 2λr− (nλ− r)2

)
= 0. (20)

Note that Q(w) = λw, gives S(w, w) = λ‖w‖2, which in view of (16) implies

S(w, w) =
1

4λ
‖grad r‖2.

Using the above equation in Equation (20), we conclude∫
M

(
1

4λ
‖grad r‖2 + nλ2 + ‖Q‖2 − 2λr− (nλ− r)2

)
= 0. (21)
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Now, using Equation (18), we have∫
M
‖grad r‖2 = 2λ

∫
M

r(nλ− r)

and inserting the above equation in Equation (21), we obtain∫
M

(
1
2

(
nλr− r2

)
+ nλ2 + ‖Q‖2 − 2λr− (nλ− r)2

)
= 0. (22)

Using Equation (8), we have ∫
M
(nλ− r) = 0 (23)

and using Equation (23) in Equation (22), we arrive at∫
M

(
1
2

(
n2λ2 − r2

)
+ nλ2 + ‖Q‖2 − 2nλ2 − n2λ2 + 2n2λ2 − r2

)
= 0,

that is, ∫
M

(
r2

n
− ‖Q‖2

)
=

3n− 2
2n

∫
M

(
n2λ2 − r2

)
. (24)

Now, using the Schwarz’s inequality and n2λ2 ≥ r2, we conclude ‖Q‖2 = r2

n and this
inequality holds, if and only if,

Q =
r
n

I. (25)

Since, n > 2, we conclude that r is a constant and, therefore, Equation (23) implies
r = nλ. Thus, Lemma 2 and Equation (25) yield

£wg = 0.

Hence, (M, g, w, σ) is a trivial Ricci soliton. The converse is trivial.

Theorem 3. Let (M, g, w, σ) be an n-dimensional compact and connected Ricci almost soliton,
n > 2, with the potential vector field w a geodesic vector field. Then, the Ricci curvature S(w, w),
the associated operator F and the scalar curvature r satisfy

S(w, w) ≥ ‖F‖2 +
n− 1

n
(nσ− r)2,

if and only if, (M, g, w, σ) is a trivial Ricci soliton.

Proof. Suppose (M, g, w, σ) is an n-dimensional compact Ricci almost soliton and w, a
geodesic vector field satisfying

S(w, w) ≥ ‖F‖2 +
n− 1

n
(nσ− r)2. (26)

Then, for a local orthonormal frame {e1, . . . , en}, using Equation (4), we have

‖∇w‖2 =
n

∑
i=1

g(∇ei w,∇ei w) = nσ2 + ‖Q‖2 + ‖F‖2 − 2σr. (27)

Now, using the following integral formula (cf. [19])∫
M

(
S(w, w) +

1
2
|£wg| − ‖∇w‖2 − (div w)2

)
= 0
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and Lemma 2, Equations (8) and (27), we obtain

∫
M

(
S(w, w) + 2

(
‖Q‖2 − r2

n

)
+

2
n
(nσ− r)2 − nσ2

−‖Q‖2 − ‖F‖2 + 2σr− (nσ− r)2
)

= 0.

The above equation can be arranged as

∫
M

(
r2

n
− ‖Q‖2

)
=
∫

M

(
S(w, w)− ‖F‖2 −

(
n− 1

n

)
(nσ− r)2

)
,

and in view of inequality (26), we conclude

‖Q‖2 =
1
n

r2.

The above equality holds, if and only if,

Q =
r
n

I (28)

and as n > 2 the Equation (28) implies r is a constant. Next, as w is a geodesic vector field,
using the above equation together with Equation (12), we conclude( r

n
− σ

)
w = Fw. (29)

Taking the inner product with w in Equation (29), we get( r
n
− σ

)
‖w‖2 = 0

and on connected M, we get either nσ = r or w = 0. If w = 0, then as n > 2, we get
(M, g, w, σ) is a trivial Ricci soliton. Moreover, in another case with Q = r

n I, Lemma 2 and
r a constant implies (M, g, w, σ) is a trivial Ricci soliton. The converse is trivial.

Theorem 4. Let (M, g, w, σ) be an n-dimensional connected Ricci almost soliton, n > 2, with
the soliton vector field w a geodesic vector field. Then, (M, g, w, σ) is a trivial Ricci soliton, if and
only if, the Ricci curvature S(w, w), the associated operator F satisfies S(w, w) ≥ ‖F‖2 and the
function nσ− r is constant on the integral curves of w.

Proof. Let (M, g, w, σ) be a connected Ricci almost soliton with w, a geodesic vector field.
Suppose that the function nσ− r is constant on the integral curves of w and

S(w, w) ≥ ‖F‖2. (30)

Then, using Equation (5), we have

R(X, w)w = X(σ)w−w(σ)X− (∇Q)(X, w) + (∇Q)(w, X)

+ (∇F)(X, w)− (∇F)(w, X). (31)

Taking the covariant derivative in Equation (12) and using Equation (4), we get

(∇Q)(X, w) + Q(σX−Q(X) + FX) = σ(σX−Q(X) + FX) + (∇F)(X, w)

+X(σ)w + F(σX−Q(X) + FX),
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that is,

(∇Q)(X, w)− (∇F)(X, w) = X(σ)w + σ2X− 2σQ(X) + Q2(X)

−Q(FX) + 2σFX− FQ(X) + F2X.

Inserting this equation, in Equation (31), we obtain

R(X, w)w = (∇Q)(w, X)− (∇F)(w, X)−w(σ)X− (Q− σI)2X

+Q(FX) + FQ(X)− 2σFX− F2X.

Now, for a local orthonormal frame {e1, . . . , en}, choosing X = ei in the above equation
and taking the inner product with ei and taking sum of the resulting equation, we conclude

S(w, w) = w(r)− nw(σ)− ‖Q− σI‖2 + ‖F‖2,

that is,
S(w, w)− ‖F‖2 + w(nσ− r) + ‖Q− σI‖2 = 0. (32)

Using the condition that the function nσ− r is constant on the integral curves of w
and the inequality (30) in the above equation, we conclude

Q = σI (33)

and as n > 2, the above equation implies σ is a constant. Moreover, using S = σg in
Equation (1), we conclude £wg = 0, and this proves that (M, g, w, σ) is a trivial Ricci soliton.
The converse is trivial.

As a consequence of the proof of the previous Theorem, for a compact Ricci almost
soliton, we have the following.

Corollary 1. Let (M, g, w, σ) be an n-dimensional compact Ricci almost soliton, n > 2, with
soliton vector field w being a geodesic vector field. Then, (M, g, w, σ) is a trivial Ricci soliton, if
and only if, the Ricci curvature S(w, w), the associated operator F and the scalar curvature r satisfy

S(w, w) ≥ ‖F‖2 + (nσ− r)2.

Proof. Let (M, g, w, σ) be a compact Ricci almost soliton with w a geodesic vector field and

S(w, w) ≥ ‖F‖2 + (nσ− r)2. (34)

Note that using Equation (8), we have div((nσ− r)w) = w(nσ− r) + (nσ− r)2,
inserting this equation in Equation (32) and integrating the resulting equation, we obtain∫

M

(
S(w, w)− ‖F‖2 − (nσ− r)2 + ‖Q− σI‖2

)
= 0,

that is, ∫
M
‖Q− σI‖2 =

∫
M

(
‖F‖2 + (nσ− r)2 − S(w, w)

)
.

Using inequality (34) in the above equation, we obtain Q = σI and the rest of proof
follows as in the proof of Theorem 4.

4. Conclusions

It is known that on the sphere Sn(c) with canonical metric g, there is a vector field ξ
and a non-constant function f , such that (Sn(c), g, ξ, f ) is a Ricci almost soliton (cf. [4–6]).
In the geometry of Ricci almost solitons, there are two important questions, the first one
is to find conditions under which a Ricci almost soliton is a trivial Ricci soliton and the
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other is to find conditions under which a compact Ricci almost soliton is isometric to Sn(c).
Geodesic vector fields (vector fields having integral curves geodesics) (cf. [18]) are linked
to Killing vector fields and therefore, in this paper, are employed on Ricci almost solitons
in reducing them to trivial Ricci solitons. There are other types of vector fields, for instance
generalized geodesic vector fields, which are closely related to conformal vector fields
(cf. [20]), it will be interesting to investigate the role of generalized geodesic vector fields
on compact Ricci almost solitons in making them isometric to the sphere Sn(c).
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