# Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

**Definition**

**1.**

**Definition**

**2.**

**Definition**

**3.**

**Definition**

**4.**

**Definition**

**5.**

**Definition**

**6.**

**Lemma**

**1.**

**Lemma**

**2.**

## 2. Results

**Definition**

**7.**

**Theorem**

**1.**

**Proof.**

**Corollary**

**1.**

**Proof.**

**Corollary**

**2.**

**Proof.**

**Theorem**

**2.**

**Proof.**

**Corollary**

**3.**

**Proof.**

**Corollary**

**4.**

**Proof.**

**Theorem**

**3.**

**Corollary**

**5.**

**Corollary**

**6.**

## 3. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl.
**1978**, 65, 289–305. [Google Scholar] [CrossRef] [Green Version] - Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J.
**1981**, 28, 157–172. [Google Scholar] [CrossRef] - Miller, S.S.; Mocanu, P.T. Subordinants of differential superordinations. Complex Var.
**2003**, 48, 815–826. [Google Scholar] [CrossRef] - Cho, N.E.; Aouf, A.M.K. Some applications of fractional calculus operators to a certain subclass of analytic functions with negative coefficients. Turk. J. Math.
**1996**, 20, 553–562. [Google Scholar] - Alb Lupaş, A. Properties on a subclass of analytic functions defined by a fractional integral operator. J. Comput. Anal. Appl.
**2019**, 27, 506–510. [Google Scholar] - Alb Lupaş, A. Inequalities for Analytic Functions Defined by a Fractional Integral Operator. In Frontiers in Functional Equations and Analytic Inequalities; Anastassiou, G., Rassias, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 731–745. [Google Scholar]
- Srivastava, H.M.; Bansal, M.; Harjule, P. A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function. Math. Meth. Appl. Sci.
**2018**, 1–14. [Google Scholar] [CrossRef] - Saxena, R.K.; Purohit, S.D.; Kumar, D. Integral Inequalities Associated with Gauss Hypergeometric Function Fractional Integral Operators. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci.
**2018**, 88, 27–31. [Google Scholar] [CrossRef] - Cho, N.E.; Aouf, M.K.; Srivastava, R. The principle of differential subordination and its application to analytic and p-valent functions defined by a generalized fractional differintegral operator. Symmetry
**2019**, 11, 1083. [Google Scholar] [CrossRef] [Green Version] - Oros, G.I. New Conditions for Univalence of Confluent Hypergeometric Function. Symmetry
**2021**, 13, 82. [Google Scholar] [CrossRef] - Kanas, S.; Stankiewicz, J. Univalence of confluent hypergeometric function. Ann. Univ. Mariae Curie-Sklodowska
**1998**, 1, 51–56. [Google Scholar] - Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math.
**1985**, 154, 137–152. [Google Scholar] [CrossRef] - Porwal, S.; Kumar, S. Confluent hypergeometric distribution and its applications on certain classes of univalent functions. Afr. Mat.
**2017**, 28, 1–8. [Google Scholar] [CrossRef] - Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-Leffler–confluent hypergeometric functions with fractional integral operator. Math. Methods Appl. Sci.
**2020**. [Google Scholar] [CrossRef] - Bulboacă, T. Classes of first order differential superordinations. Demonstratio Math.
**2002**, 35, 287–292. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lupaş, A.A.; Oros, G.I.
Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function. *Symmetry* **2021**, *13*, 327.
https://doi.org/10.3390/sym13020327

**AMA Style**

Lupaş AA, Oros GI.
Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function. *Symmetry*. 2021; 13(2):327.
https://doi.org/10.3390/sym13020327

**Chicago/Turabian Style**

Lupaş, Alina Alb, and Georgia Irina Oros.
2021. "Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function" *Symmetry* 13, no. 2: 327.
https://doi.org/10.3390/sym13020327