Generalized Fibonacci Numbers, Cosmological Analogies, and an Invariant
Abstract
:1. Introduction
2. FLRW Cosmology
3. The Cosmological Analogy
4. Lagrangian and Hamiltonian
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sigler, L.E. Fibonacci’s Liber Abaci: A Translation into Modern English of Leonardo Pisano’s Book of Calculation; Springer: New York, NY, USA, 2002. [Google Scholar]
- Han, J.S.; Kim, H.S.; Neggers, J. On Fibonacci functions with Fibonacci numbers. Adv. Differ. Equ. 2012, 2012, 126. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure Of Space-Time; Cambridge University Press: Cambridge, CA, USA, 1973. [Google Scholar]
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Addison-Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- Kolb, E.W.; Turner, M.S. The Early Universe; Addison-Wesley: Redwood City, CA, USA, 1990. [Google Scholar]
- Liddle, A.R.; Lyth, D.H. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, CA, USA, 2000. [Google Scholar]
- Liddle, A.R. An Introduction to Modern Cosmology; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Eisenhart, L.P. Riemannian Geometry; Princeton University Press: Princeton, NJ, USA, 1949. [Google Scholar]
- Amendola, L.; Tsujikawa, S. Dark Energy, Theory and Observations; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Hoggatt, V.E., Jr.; Bicknell-Johnson, M. Fibonacci Convolution Sequences. Fibonacci Q. 1977, 15, 117. [Google Scholar]
- Baringhaus, L. Fibonacci numbers, Lucas numbers and integrals of certain Gaussian processes. Proc. Am. Math. Soc. 1996, 124, 3875. [Google Scholar] [CrossRef]
- Gardiner, J. Fibonacci, quasicrystals and the beauty of flowers. Plant Signal. Behav. 2012, 7, 1721. [Google Scholar] [CrossRef] [Green Version]
- Jacquod, P.; Silvestrov, P.G.; Beenakker, C.W.J. Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo. Phys. Rev. E 2001, 64, 055203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Affleck, I. Golden mean seen in a magnet. Nature 2010, 464, 362. [Google Scholar] [CrossRef] [PubMed]
- Luminet, J.-P.; Weeks, J.; Riazuelo, A.; Ehoucq, R.; Uzan, J.-P. Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background. Nature 2003, 425, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boman, B.M.; Dinh, T.N.; Decker, K.; Emerick, B.; Raymond, C.; Schleiniger, G. Why do Fibonacci numbers appear in patterns of growth in nature? A model for tissue renewal based on asymmetric cell division. Fibonacci Q. 2017, 55, 30. [Google Scholar]
- Boman, B.M.; Ye, Y.; Decker, K.; Raymond, C.; Schleiniger, G. Geometric Branching Patterns based on p-Fibonacci Sequences: Self-similarity Across Different Degrees of Branching and Multiple Dimensions. Fibonacci Q. 2019, 7, 29. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraoni, V.; Atieh, F. Generalized Fibonacci Numbers, Cosmological Analogies, and an Invariant. Symmetry 2021, 13, 200. https://doi.org/10.3390/sym13020200
Faraoni V, Atieh F. Generalized Fibonacci Numbers, Cosmological Analogies, and an Invariant. Symmetry. 2021; 13(2):200. https://doi.org/10.3390/sym13020200
Chicago/Turabian StyleFaraoni, Valerio, and Farah Atieh. 2021. "Generalized Fibonacci Numbers, Cosmological Analogies, and an Invariant" Symmetry 13, no. 2: 200. https://doi.org/10.3390/sym13020200