# Generalized Fibonacci Numbers, Cosmological Analogies, and an Invariant

^{*}

## Abstract

**:**

## 1. Introduction

## 2. FLRW Cosmology

## 3. The Cosmological Analogy

## 4. Lagrangian and Hamiltonian

**Proposition**

**1.**

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Sigler, L.E. Fibonacci’s Liber Abaci: A Translation into Modern English of Leonardo Pisano’s Book of Calculation; Springer: New York, NY, USA, 2002. [Google Scholar]
- Han, J.S.; Kim, H.S.; Neggers, J. On Fibonacci functions with Fibonacci numbers. Adv. Differ. Equ.
**2012**, 2012, 126. [Google Scholar] [CrossRef] [Green Version] - Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure Of Space-Time; Cambridge University Press: Cambridge, CA, USA, 1973. [Google Scholar]
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Addison-Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- Kolb, E.W.; Turner, M.S. The Early Universe; Addison-Wesley: Redwood City, CA, USA, 1990. [Google Scholar]
- Liddle, A.R.; Lyth, D.H. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, CA, USA, 2000. [Google Scholar]
- Liddle, A.R. An Introduction to Modern Cosmology; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Eisenhart, L.P. Riemannian Geometry; Princeton University Press: Princeton, NJ, USA, 1949. [Google Scholar]
- Amendola, L.; Tsujikawa, S. Dark Energy, Theory and Observations; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Hoggatt, V.E., Jr.; Bicknell-Johnson, M. Fibonacci Convolution Sequences. Fibonacci Q.
**1977**, 15, 117. [Google Scholar] - Baringhaus, L. Fibonacci numbers, Lucas numbers and integrals of certain Gaussian processes. Proc. Am. Math. Soc.
**1996**, 124, 3875. [Google Scholar] [CrossRef] - Gardiner, J. Fibonacci, quasicrystals and the beauty of flowers. Plant Signal. Behav.
**2012**, 7, 1721. [Google Scholar] [CrossRef] [Green Version] - Jacquod, P.; Silvestrov, P.G.; Beenakker, C.W.J. Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo. Phys. Rev. E
**2001**, 64, 055203. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Affleck, I. Golden mean seen in a magnet. Nature
**2010**, 464, 362. [Google Scholar] [CrossRef] [PubMed] - Luminet, J.-P.; Weeks, J.; Riazuelo, A.; Ehoucq, R.; Uzan, J.-P. Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background. Nature
**2003**, 425, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Boman, B.M.; Dinh, T.N.; Decker, K.; Emerick, B.; Raymond, C.; Schleiniger, G. Why do Fibonacci numbers appear in patterns of growth in nature? A model for tissue renewal based on asymmetric cell division. Fibonacci Q.
**2017**, 55, 30. [Google Scholar] - Boman, B.M.; Ye, Y.; Decker, K.; Raymond, C.; Schleiniger, G. Geometric Branching Patterns based on p-Fibonacci Sequences: Self-similarity Across Different Degrees of Branching and Multiple Dimensions. Fibonacci Q.
**2019**, 7, 29. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Faraoni, V.; Atieh, F.
Generalized Fibonacci Numbers, Cosmological Analogies, and an Invariant. *Symmetry* **2021**, *13*, 200.
https://doi.org/10.3390/sym13020200

**AMA Style**

Faraoni V, Atieh F.
Generalized Fibonacci Numbers, Cosmological Analogies, and an Invariant. *Symmetry*. 2021; 13(2):200.
https://doi.org/10.3390/sym13020200

**Chicago/Turabian Style**

Faraoni, Valerio, and Farah Atieh.
2021. "Generalized Fibonacci Numbers, Cosmological Analogies, and an Invariant" *Symmetry* 13, no. 2: 200.
https://doi.org/10.3390/sym13020200