# Solution Behavior Near Very Rough Walls under Axial Symmetry: An Exact Solution for Anisotropic Rigid/Plastic Material

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Statement of the Problem

#### 2.1. Material Model

#### 2.2. Boundary Value Problem

## 3. General Solution

## 4. Analysis of the General Solution

#### 4.1. Special Case $\phi =0$

#### 4.2. Special Case $\phi =\pi /4$

#### 4.3. General Case

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Kacem, A.; Krichen, A.; Manach, P.-Y. Occurrence and effect of ironing in the hole-flanging process. J. Mater. Process. Technol.
**2011**, 211, 1606–1613. [Google Scholar] [CrossRef] - Jaspers, S.S.; Dautzenberg, J. Material behaviour in conditions similar to metal cutting: Flow stress in the primary shear zone. J. Mater. Process. Technol.
**2002**, 122, 322–330. [Google Scholar] [CrossRef] - Alexandrov, S.; Richmond, O. Singular plastic flow fields near surfaces of maximum friction stress. Int. J. Non-Linear Mech.
**2001**, 36, 1–11. [Google Scholar] [CrossRef] - Alexandrov, S.; Jeng, Y.-R. Singular rigid/plastic solutions in anisotropic plasticity under plane strain conditions. Contin. Mech. Thermodyn.
**2013**, 25, 685–689. [Google Scholar] [CrossRef] - Rice, J.R. Plane strain slip line theory for anisotropic rigid/plastic materials. J. Mech. Phys. Solids
**1973**, 21, 63–74. [Google Scholar] [CrossRef] - Gottschalk, H.P.; Eisner, E.; Hosalkar, H.S. Medial epicondyle fractures in the pediatric population. J. Am. Acad. Orthop. Surg.
**2012**, 20, 223–232. [Google Scholar] [CrossRef] [PubMed] - Collins, I.F.; Meguid, S.A. On the Influence of Hardening and Anisotropy on the Plane-Strain Compression of Thin Metal Strip. J. Appl. Mech.
**1977**, 44, 271–278. [Google Scholar] [CrossRef] - Wang, Y.; Alexandrov, S.; Lyamina, E. Solution Behavior in the Vicinity of Characteristic Envelopes for the Double Slip and Rotation Model. Appl. Sci.
**2020**, 10, 3220. [Google Scholar] [CrossRef] - Harris, D. A hyperbolic augmented elasto-plastic model for pressure-dependent yield. Acta Mech.
**2014**, 225, 2277–2299. [Google Scholar] [CrossRef] [Green Version] - Alexandrov, S.; Richmond, O. Couette flows of rigid/plastic solids: Analytical examples of the interaction of constitutive and frictional laws. Int. J. Mech. Sci.
**2001**, 43, 653–665. [Google Scholar] [CrossRef] - Chen, J.-S.; Pan, C.; Roque, C.M.O.L.; Wang, H.-P. A Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech.
**1998**, 22, 289–307. [Google Scholar] [CrossRef] - Facchinetti, M.; Mishuris, G. Analysis of the maximum friction condition for green body forming in an ANSYS environment. J. Eur. Ceram. Soc.
**2016**, 36, 2295–2302. [Google Scholar] [CrossRef] [Green Version] - Fries, T.; Belytschko, T. The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Methods Eng.
**2010**, 84, 253–304. [Google Scholar] [CrossRef] - Sasaki, T.; Morris, R.; Thompson, G.B.; Syarif, Y.; Fox, D. Formation of ultra-fine copper grains in copper-clad aluminum wire. Scr. Mater.
**2010**, 63, 488–491. [Google Scholar] [CrossRef] - Stolyarov, A.; Polyakova, M.; Atangulova, G.; Alexandrov, S. Effect of Die Angle and Frictional Conditions on Fine Grain Layer Generation in Multipass Drawing of High Carbon Steel Wire. Metals
**2020**, 10, 1462. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alexandrov, S.; Lyamina, E.; Manach, P.-Y.
Solution Behavior Near Very Rough Walls under Axial Symmetry: An Exact Solution for Anisotropic Rigid/Plastic Material. *Symmetry* **2021**, *13*, 184.
https://doi.org/10.3390/sym13020184

**AMA Style**

Alexandrov S, Lyamina E, Manach P-Y.
Solution Behavior Near Very Rough Walls under Axial Symmetry: An Exact Solution for Anisotropic Rigid/Plastic Material. *Symmetry*. 2021; 13(2):184.
https://doi.org/10.3390/sym13020184

**Chicago/Turabian Style**

Alexandrov, Sergei, Elena Lyamina, and Pierre-Yves Manach.
2021. "Solution Behavior Near Very Rough Walls under Axial Symmetry: An Exact Solution for Anisotropic Rigid/Plastic Material" *Symmetry* 13, no. 2: 184.
https://doi.org/10.3390/sym13020184