The Well Posedness for Nonhomogeneous Boussinesq Equations
Abstract
:1. Introduction
2. Some Results on Besov Spaces
2.1. Littlewood-Paley Theory
2.2. The Homogeneous Besov Spaces
2.3. Estimates for Linear Transport Equation
3. The Existence of the Solution
- (1)
- The uniform a priori estimates for .
- (2)
- The proof of the convergence of the sequences.
4. The Uniqueness of the Solution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drazin, P.G.; Reid, W.H. Hydrodynamic Stability; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Majda, A. Introduction to PDEs and Waves for the Atmosphere and Ocean; Courant Lecture Notes in Mathematics; AMS/CIMS: Providence, RI, USA, 2003; Volume 9. [Google Scholar]
- Cannon, J.R.; Benedetto, E.D. The Initial Problem for the Boussinesq Equations with Data in Lp; Lecture Note in Mathematics; Springer: Berlin, Germany, 1980; Volume 771, pp. 129–144. [Google Scholar]
- Chae, D.; Nam, H.-S. Local existence and blow-up criterion for the Boussinesq equations. Proc. R. Soc. Edinb. 1997, 127A, 935–946. [Google Scholar] [CrossRef]
- Chae, D.; Kim, S.-K.; Nam, H.-S. Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq equations. Nagoya Math. J. 1999, 155, 58–80. [Google Scholar] [CrossRef] [Green Version]
- Taniuchi, Y. A note on the blow-up criterion for the inviscid 2-D Boussinesq equations. Lect. Notes Pure Appl. Math. 2002, 223, 131–140. [Google Scholar]
- Chae, D. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 2006, 203, 497–513. [Google Scholar] [CrossRef] [Green Version]
- Danchin, R.; Paicu, M. Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces. Physica D 2008, 237, 1444–1460. [Google Scholar] [CrossRef] [Green Version]
- Danchin, R.; Paicu, M. Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data. Commun. Math. Phys. 2009, 290, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.Y.; Li, C. Global well-posedness of the viscous Boussinesq equations. Discret. Contin. Dyn. Syst. 2005, 12, 1–12. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Zhang, Z. Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces. J. Math. Fluid Mech. 2010, 12, 280–292. [Google Scholar]
- Abidi, H.; Hmidi, T. On the global well-posedness for Boussinesq system. J. Differ. Equ. 2007, 233, 199–220. [Google Scholar] [CrossRef]
- Sebastian, A.L.; Jose, L.B. The initial value problem for a genneralized Boussinesq model. Nonlinear Anal. 1999, 36, 457–480. [Google Scholar]
- Baranovskii, E.S.; Domnich, A.A. Model of a Nonuniformly Heated Viscous Flow through a Bounded Domain. Differ. Equ. 2020, 56, 304–314. [Google Scholar] [CrossRef]
- Baranovskii, E.S.; Domnich, A.A.; Artemov, M.A. Optimal Boundary Control of Non-Isothermal Viscous Fluid Flow. Fluids 2019, 4, 133. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.H.; Li, Q.Y. Global existence and large time behaviors of the solutions to the full incompressible Navier-Stokes equations with temperature-dependent coefficients. J. Differ. Equ. 2021, 274, 876–923. [Google Scholar] [CrossRef]
- Lorca, S.A.; Boldrini, J.L. Stationary solutions for genneralized Boussinesq model. J. Differ. Equ. 1996, 124, 389–406. [Google Scholar] [CrossRef] [Green Version]
- Fujita, H.; Kato, T. On the Navier-Stokes initial value problem I. Arch. Ration. Mech. Anal. 1964, 16, 269–315. [Google Scholar] [CrossRef]
- Danchin, R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 2000, 141, 579–614. [Google Scholar] [CrossRef]
- Abidi, H.; Paicu, M. Global Existence for the Magnetohydrodynamic system in critical spaces. Proc. R. Soc. Edinb. 2008, 138A, 447–476. [Google Scholar] [CrossRef]
- Chen, Q.; Miao, C.; Zhang, Z. On the well-posedness for the viscous shallow water equations. SIAM J. Math. Anal. 2008, 40, 443–474. [Google Scholar] [CrossRef] [Green Version]
- Danchin, R. Local theory in Critical spaces for compressible viscous and heat conductive gases. Commun. Partial Differ. Equ. 2001, 26, 1183–1233. [Google Scholar] [CrossRef]
- Danchin, R. Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 2001, 160, 1–39. [Google Scholar] [CrossRef]
- Danchin, R. Density-dependent incompressible viscous fluids in critical spaces. Proc. R. Soc. Edinb. 2003, 133A, 1311–1334. [Google Scholar] [CrossRef]
- Deng, W.; Wu, J.; Zhang, P. Stability of Couette flow for 2D Boussinesq system with vertical dissipation. J. Funct. Anal. 2021, 281, 109255. [Google Scholar] [CrossRef]
- Qiu, H.; Du, Y.; Yao, Z. A note on the regularity criterion of the two-dimensional Newton CBoussinesq equations. Nonlinear Anal. Real World Appl. 2011, 12, 2012–2015. [Google Scholar] [CrossRef]
- Qiu, H.; Du, Y.; Yao, Z. Blow-up criteria for 3D Boussinesq equations in the multiplier space. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1820–1824. [Google Scholar] [CrossRef]
- Qiu, H.; Du, Y.; Yao, Z. A blow-up criterion for 3D Boussinesq equations in Besov spaces. Nonlinear Anal. Theory Methods Appl. 2010, 73, 806–815. [Google Scholar] [CrossRef]
- Chen, W.; Ikehata, R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. J. Differ. Equ. 2021, 292, 176–219. [Google Scholar] [CrossRef]
- Chen, W.; Palmieri, A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part. Z. Angew. Math. Phys. 2019, 70, 67. [Google Scholar] [CrossRef] [Green Version]
- Chemin, J.-Y. Perfect Incompressible Fluids; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Chemin, J.-Y. Théorèmes D’unicité Pour le Systèème de Navie-Stockes Tridimensionnel. J. Anal. 1999, 77, 27–50. [Google Scholar]
- Abidi, H.; Paicu, M. Éxistence globale pour un fluide inhomogène. Ann. Inst. Fourier 2007, 57, 883–917. [Google Scholar] [CrossRef] [Green Version]
- Runst, T.; Sickel, W. Sobolev spaces of fractional order, Nemytskii operators, and nonlinear partial differential equations. In Nonlinear Analysis and Applications; Walter de Wruyter: Berlin, Germany, 1996; Volume 3. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ouyang, B. The Well Posedness for Nonhomogeneous Boussinesq Equations. Symmetry 2021, 13, 2110. https://doi.org/10.3390/sym13112110
Liu Y, Ouyang B. The Well Posedness for Nonhomogeneous Boussinesq Equations. Symmetry. 2021; 13(11):2110. https://doi.org/10.3390/sym13112110
Chicago/Turabian StyleLiu, Yan, and Baiping Ouyang. 2021. "The Well Posedness for Nonhomogeneous Boussinesq Equations" Symmetry 13, no. 11: 2110. https://doi.org/10.3390/sym13112110
APA StyleLiu, Y., & Ouyang, B. (2021). The Well Posedness for Nonhomogeneous Boussinesq Equations. Symmetry, 13(11), 2110. https://doi.org/10.3390/sym13112110