New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations
Abstract
:1. Introduction
2. Notations and Preliminaries
- 1.
- the sequence converges to a fixed point of T;
- 2.
- is the unique fixed point of T in ;
- 3.
- if , then
3. Hyers-Ulam-Rassias Stability
4. -Semi-Hyers–Ulam and Hyers–Ulam Stabilities
5. Examples
5.1. First Example: 2-Differentiable Function
5.2. Second Example: 3-Differentiable Function
5.3. Third Example: 3-Differentiable Function and a Bigger Perturbation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulam, S.M. A Collection of the Mathematical Problems; Interscience Publication: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Rassias, T.M. On a modified Hyers-Ulam sequence. J. Math. Anal. Appl. 1991, 158, 106–113. [Google Scholar] [CrossRef]
- Belluot, N.B.; Brzdęk, J.; Ciepliński, K. On some recent developments in Ulam’s type stability. Abstr. Appl. Anal. 2012, 2012, 41. [Google Scholar]
- Brzdęk, J.; Popa, D.; Rasa, I.; Xu, B. Ulam Stability of Operators; Elsevier Science Publishing Co Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Burton, T.A. Volterra Integral and Differential Equations, 2nd ed.; Mathematical in Science and Engineering; 202; Elseiver: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Corduneanu, C. Principles of Differential and Integral Equations, 2nd ed.; Chelsea: New York, NY, USA, 1988. [Google Scholar]
- Gripenberg, G.; Londen, S.O.; Staffans, O. Volterra Integral and Functional Equations; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Lakshmikantham, V.; Rao, M.R.M. Theory of Integro-Differential Equations, Stability and Control: Theory, Methods and Applications 1; Gordon and Breach Publisher: Lausanne, Switzerland, 1995. [Google Scholar]
- Alsulami, H.H.; Gülyaz, S.; Karapinar, E.; Erhan, I.M. An Ulam stability result on quasi-b-metric-like spaces. Open Math. 2016, 14, 1087–1103. [Google Scholar] [CrossRef]
- András, S.Z.; Kolumbán, J.J. On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions. Nonlinear Anal. Theory Methods Appl. 2013, 82, 1–11. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdęk, J.; Jablońska, E.; Malejki, R. Ulam’s stability of a generalization of the Fréchet functional equation. J. Math. Anal. Appl. 2016, 442, 537–553. [Google Scholar] [CrossRef]
- Brzdęk, J.; Popa, D.; Rassias, T.M. Ulam Type Stability; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Buşe, C.; O’Regan, D.; Saierli, O.; Tabassum, A. Hyers-Ulam stability and discrete dichotomy for difference periodic systems. Bull. Des Sci. MathéMatiques 2016, 140, 908–934. [Google Scholar] [CrossRef]
- Castro, L.P.; Simões, A.M. Hyers-Ulam and Hyers-Ulam-Rassias stability of a class of Hammerstein integral equations. In Proceedings of the AIP Conference Proceedings, ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, La Rochelle, France, 4–8 July 2016; pp. 1–10. [Google Scholar]
- Castro, L.P.; Simões, A.M. Hyers-Ulam-Rassias stability of nonlinear integral equations through the Bielecki metric. Math. Methods Appl. Sci. 2018, 1–17. [Google Scholar] [CrossRef]
- Cho, Y.J.; Park, C.; Rassias, T.M.; Saadati, R. Stability of Functional Equations in Banach Algebras; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Du, W.S. A generalization of Diaz-Margolis’s fixed point theorem and its application to the stability of generalized Volterra integral equations. J. Inequal. Appl. 2015, 407, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.M.; Karapinar, E.; Alsulami, H.H. Ulam-Hyers stability for MKC mappings via fixed point theory. J. Funct. Spaces 2016, 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Basel, Swizerland, 1998. [Google Scholar]
- Jun, K.W.; Kim, H.M. Ulam stability problem for quadratic mappings of Euler–Lagrange. Nonlinear Anal. Theory Methods Appl. 2005, 61, 1093–1104. [Google Scholar] [CrossRef]
- Jung, S.M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis; Hadronic Press: Palm Harbor, FL, USA, 2001. [Google Scholar]
- Park, D.W.; Lee, Y.H. The Hyers–Ulam–Rassias stability of the pexiderized equations. Nonlinear Anal. Theory Methods Appl. 2005, 63, 2503–2513. [Google Scholar] [CrossRef]
- Popa, D.; Raşa, I. On the best constant in Hyers-Ulam stability of some positive linear operators. J. Math. Anal. Appl. 2014, 412, 103–108. [Google Scholar] [CrossRef]
- Caulk, D.A.; Naghdi, P.M. Axisymmetric Motion of a Viscous Fluid Inside a Slender Surface of Revolution. J. Appl. Mech. 1987, 54, 190–196. [Google Scholar] [CrossRef]
- Carapau, F.; Correia, P. Numerical simulations of a third-grade fluid flow on a tube through a contraction. Eur. J. Mech. B/Fluids 2017, 65, 45–53. [Google Scholar] [CrossRef]
- Castro, L.P.; Simões, A.M. Different types of Hyers-Ulam-Rassias stabilities for a class of integro-differential equations. Filomat 2017, 31, 5379–5390. [Google Scholar] [CrossRef] [Green Version]
- Brzdęk, J.; Cădariu, L.; Ciepliński, K. Fixed point theory and the Ulam stability. J. Funct. Spaces 2014, 2014, 16. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.P.; Guerra, R.C. Hyers-Ulam-Rassias stability of Volterra integral equations within weighted spaces. Lib. Math. 2013, 33, 21–35. [Google Scholar] [CrossRef]
- Castro, L.P.; Ramos, A. Hyers-Ulam and Hyers-Ulam-Rassias stability of Volterra integral equations with delay. In Integral Methods in Science and Engineering; Constanda, C., Pérez, M., Eds.; Birkhäuser: Boston, MA, USA, 2010; pp. 85–94. [Google Scholar]
- Castro, L.P.; Ramos, A. Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations. Banach J. Math. Anal. 2009, 3, 36–43. [Google Scholar] [CrossRef]
- Castro, L.P.; Ramos, A. Hyers-Ulam stability for a class of Fredholm integral equations. In Mathematical Problems in Engineering Aerospace and Sciences ICNPAA 2010; Sivasundaram, S., Ed.; Cambridge Scientific Publishers: Cambridge, UK, 2010; pp. 171–176. [Google Scholar]
- Castro, L.P.; Simões, A.M. Hyers-Ulam and Hyers-Ulam-Rassias stability of a class of integral equations on finite intervals. In Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, Cádiz, Spain, 4–8 July 2017; pp. 507–515. [Google Scholar]
- Castro, L.P.; Simões, A.M. Hyers-Ulam and Hyers-Ulam-Rassias stability for a class of integro-differential equations. In Mathematical Methods in Engineering: Theoretical Aspects; Tas, K., Baleanu, D., Machado, J.A.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Castro, L.P.; Simões, A.M. Stabilities for a class of higher order integro-differential equations. AIP Conf. Proc. 2018, 2046. [Google Scholar] [CrossRef]
- Cădariu, L.; Găvruţa, L.; Găvruça, P. Weighted space method for the stability of some nonlinear equations. Appl. Anal. Discrete Math. 2012, 6, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Tisdell, C.C.; Zaidi, A. Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling. Nonlinear Anal. 2008, 68, 3504–3524. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, A.M.; Carapau, F.; Correia, P. New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations. Symmetry 2021, 13, 2068. https://doi.org/10.3390/sym13112068
Simões AM, Carapau F, Correia P. New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations. Symmetry. 2021; 13(11):2068. https://doi.org/10.3390/sym13112068
Chicago/Turabian StyleSimões, Alberto M., Fernando Carapau, and Paulo Correia. 2021. "New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations" Symmetry 13, no. 11: 2068. https://doi.org/10.3390/sym13112068
APA StyleSimões, A. M., Carapau, F., & Correia, P. (2021). New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations. Symmetry, 13(11), 2068. https://doi.org/10.3390/sym13112068