A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function
Abstract
:1. Significance Statement
2. Introduction
3. Definite Integral of the Contour Integral
4. The Hurwitz–Lerch Zeta Function and Infinite Sum of the Contour Integral
4.1. The Hurwitz–Lerch Zeta Function
4.2. Infinite Sum of the Contour Integral
5. Definite Integral in Terms of the Hurwitz–Lerch Zeta Function
6. Special Cases
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simon, P.; De Laplace, M. Théorie Analytique des Probabilités; Courcier: Paris, France, 1820. [Google Scholar]
- Poularikas, A.D. The Transforms and Applications Handbook, 2nd ed.; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Debnath, L. The Double Laplace Transforms and Their Properties with Applications to Functional, Integral and Partial Differential Equations. Int. J. Appl. Comput. Math. 2016, 2, 223–241. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Kim, J.-H. The pricing of vulnerable options with double Mellin transforms. J. Math. Anal. Appl. 2015, 422, 838–857. [Google Scholar] [CrossRef]
- Finch, S.R. f Mathematical Constants; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Bennett, T.; Howls, C.J.; Nemes, G.; Daalhuis, A.B.O. Globally Exact Asymptotics for Integrals with Arbitrary Order Saddles. SIAM J. Math. Anal. 2018, 50, 2144–2177. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.; Stauffer, A. A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples. Int. Math. Forum 2020, 15, 235–244. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Digital Library of Mathematical Functions; U.S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA; Cambridge University Press: Cambridge, UK, 2010; With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248 (2012a:33001). [Google Scholar]
- Srivastava, H.M. Some general families of the Hurwitz-Lerch Zeta functions and their applications: Recent developments and directions for further researches. Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerbaijan 2019, 45, 234–269. [Google Scholar] [CrossRef]
- Srivastava, H.M. The Zeta and Related Functions: Recent Developments. J. Adv. Eng. Comput. 2019, 3, 329–354. [Google Scholar] [CrossRef] [Green Version]
- Oldham, K.B.; Myland, J.C.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Marichev, O.; Sondow, J.; Weisstein, E.W. Catalan’s Constant, From MathWorld–A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/CatalansConstant.html (accessed on 1 September 2021).
- Weisstein, E.W. Lerch Transcendent, From MathWorld–A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/LerchTranscendent.html (accessed on 1 September 2021).
- Reese, S.; Sondow, J. Universal Parabolic Constant, From MathWorld–A Wolfram Web Resource, created by Eric W. Weisstein. Available online: https://mathworld.wolfram.com/UniversalParabolicConstant.html (accessed on 1 September 2021).
- Sondow, J.; Weisstein, E.W. Riemann Zeta Function, From MathWorld–A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/RiemannZetaFunction.html (accessed on 1 September 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, R.; Stauffer, A. A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function. Symmetry 2021, 13, 1983. https://doi.org/10.3390/sym13111983
Reynolds R, Stauffer A. A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function. Symmetry. 2021; 13(11):1983. https://doi.org/10.3390/sym13111983
Chicago/Turabian StyleReynolds, Robert, and Allan Stauffer. 2021. "A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function" Symmetry 13, no. 11: 1983. https://doi.org/10.3390/sym13111983
APA StyleReynolds, R., & Stauffer, A. (2021). A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function. Symmetry, 13(11), 1983. https://doi.org/10.3390/sym13111983