Scalarized Nutty Wormholes
Abstract
1. Introduction
2. Theoretical Setting
2.1. Action and Equations of Motion
2.2. Throats, Equators, and Boundary Conditions
2.3. Junction Conditions
2.4. Energy Conditions
3. Results
3.1. Numerics
3.2. Solutions
3.3. Domain of Existence
3.4. Throat Properties
3.5. Junction Conditions and Critical Polar Angle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Damour, T.; Esposito-Farese, G. Nonperturbative strong field effects in tensor—Scalar theories of gravitation. Phys. Rev. Lett. 1993, 70, 2220. [Google Scholar] [CrossRef]
- Antoniou, G.; Bakopoulos, A.; Kanti, P. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss–Bonnet Theories. Phys. Rev. Lett. 2018, 120, 131102. [Google Scholar] [CrossRef]
- Doneva, D.D.; Yazadjiev, S.S. New Gauss–Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories. Phys. Rev. Lett. 2018, 120, 131103. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.O.; Sakstein, J.; Gualtieri, L.; Sotiriou, T.P.; Berti, E. Spontaneous scalarization of black holes and compact stars from a Gauss–Bonnet coupling. Phys. Rev. Lett. 2018, 120, 131104. [Google Scholar] [CrossRef]
- Antoniou, G.; Bakopoulos, A.; Kanti, P. Black-Hole Solutions with Scalar Hair in Einstein-Scalar–Gauss–Bonnet Theories. Phys. Rev. D 2018, 97, 084037. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Doneva, D.D.; Kunz, J.; Yazadjiev, S.S. Radial perturbations of the scalarized Einstein-Gauss–Bonnet black holes. Phys. Rev. D 2018, 98, 084011. [Google Scholar] [CrossRef]
- Doneva, D.D.; Kiorpelidi, S.; Nedkova, P.G.; Papantonopoulos, E.; Yazadjiev, S.S. Charged Gauss–Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories. Phys. Rev. D 2018, 98, 104056. [Google Scholar] [CrossRef]
- Minamitsuji, M.; Ikeda, T. Scalarized black holes in the presence of the coupling to Gauss–Bonnet gravity. Phys. Rev. D 2019, 99, 044017. [Google Scholar] [CrossRef]
- Silva, H.O.; Macedo, C.F.B.; Sotiriou, T.P.; Gualtieri, L.; Sakstein, J.; Berti, E. Stability of scalarized black hole solutions in scalar–Gauss–Bonnet gravity. Phys. Rev. D 2019, 99, 064011. [Google Scholar] [CrossRef]
- Brihaye, Y.; Ducobu, L. Hairy black holes, boson stars and non-minimal coupling to curvature invariants. Phys. Lett. B 2019, 795, 135. [Google Scholar] [CrossRef]
- Myung, Y.S.; Zou, D. Quasinormal modes of scalarized black holes in the Einstein–Maxwell–Scalar theory. Phys. Lett. B 2019, 790, 400–407. [Google Scholar] [CrossRef]
- Bakopoulos, A.; Antoniou, G.; Kanti, P. Novel Black-Hole Solutions in Einstein-Scalar–Gauss–Bonnet Theories with a Cosmological Constant. Phys. Rev. D 2019, 99, 064003. [Google Scholar] [CrossRef]
- Doneva, D.D.; Staykov, K.V.; Yazadjiev, S.S. Gauss–Bonnet black holes with a massive scalar field. Phys. Rev. D 2019, 99, 104045. [Google Scholar] [CrossRef]
- Myung, Y.S.; Zou, D.C. Black holes in Gauss–Bonnet and Chern–Simons-scalar theory. Int. J. Mod. Phys. D 2019, 28, 1950114. [Google Scholar] [CrossRef]
- Macedo, C.F.B.; Sakstein, J.; Berti, E.; Gualtieri, L.; Silva, H.O.; Sotiriou, T.P. Self-interactions and Spontaneous Black Hole Scalarization. Phys. Rev. D 2019, 99, 104041. [Google Scholar] [CrossRef]
- Cunha, P.V.P.; Herdeiro, C.A.R.; Radu, E. Spontaneously Scalarized Kerr Black Holes in Extended Scalar-Tensor-Gauss–Bonnet Gravity. Phys. Rev. Lett. 2019, 123, 011101. [Google Scholar] [CrossRef]
- Bakopoulos, A.; Kanti, P.; Pappas, N. Existence of solutions with a horizon in pure scalar–Gauss–Bonnet theories. Phys. Rev. D 2020, 101, 044026. [Google Scholar] [CrossRef]
- Hod, S. Spontaneous scalarization of Gauss–Bonnet black holes: Analytic treatment in the linearized regime. Phys. Rev. D 2019, 100, 064039. [Google Scholar] [CrossRef]
- Collodel, L.G.; Kleihaus, B.; Kunz, J.; Berti, E. Spinning and excited black holes in Einstein-scalar–Gauss–Bonnet theory. Class. Quant. Grav. 2020, 37, 075018. [Google Scholar] [CrossRef]
- Bakopoulos, A.; Kanti, P.; Pappas, N. Large and Ultra-compact Gauss–Bonnet Black Holes with a Self-interacting Scalar Field. Phys. Rev. D 2020, 101, 084059. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Doneva, D.D.; Kahlen, S.; Kunz, J.; Nedkova, P.; Yazadjiev, S.S. Axial perturbations of the scalarized Einstein-Gauss–Bonnet black holes. Phys. Rev. D 2020, 101, 104006. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Doneva, D.D.; Kahlen, S.; Kunz, J.; Nedkova, P.; Yazadjiev, S.S. Polar quasinormal modes of the scalarized Einstein-Gauss–Bonnet black holes. arXiv 2020, arXiv:2006.06006. [Google Scholar] [CrossRef]
- Herdeiro, C.A.R.; Radu, E.; Silva, H.O.; Sotiriou, T.P.; Yunes, N. Spin-induced scalarized black holes. arXiv 2020, arXiv:2009.03904. [Google Scholar]
- Berti, E.; Collodel, L.G.; Kleihaus, B.; Kunz, J. Spin-induced black-hole scalarization in Einstein-scalar–Gauss–Bonnet theory. arXiv 2020, arXiv:2009.03905. [Google Scholar]
- Dima, A.; Barausse, E.; Franchini, N.; Sotiriou, T.P. Spin-induced black hole spontaneous scalarization. Phys. Rev. Lett. 2020, 125, 231101. [Google Scholar] [CrossRef]
- Hod, S. Onset of spontaneous scalarization in spinning Gauss–Bonnet black holes. Phys. Rev. D 2020, 102, 084060. [Google Scholar] [CrossRef]
- Doneva, D.D.; Collodel, L.G.; Krüger, C.J.; Yazadjiev, S.S. Black hole scalarization induced by the spin: 2+1 time evolution. Phys. Rev. D 2020, 102, 104027. [Google Scholar] [CrossRef]
- Ayzenberg, D.; Yagi, K.; Yunes, N. Linear Stability Analysis of Dynamical Quadratic Gravity. Phys. Rev. D 2014, 89, 044023. [Google Scholar] [CrossRef]
- Kobayashi, T.; Motohashi, H.; Suyama, T. Black hole perturbation in the most general scalar-tensor theory with second-order field equations I: The odd-parity sector. Phys. Rev. D 2012, 85, 084025, Erratum in 2017, 96, 109903. [Google Scholar] [CrossRef]
- Kobayashi, T.; Motohashi, H.; Suyama, T. Black hole perturbation in the most general scalar-tensor theory with second-order field equations II: The even-parity sector. Phys. Rev. D 2014, 89, 084042. [Google Scholar] [CrossRef]
- Yunes, N.; Pretorius, F. Dynamical Chern–Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation. Phys. Rev. D 2009, 79, 084043. [Google Scholar] [CrossRef]
- Konno, K.; Matsuyama, T.; Tanda, S. Rotating black hole in extended Chern–Simons modified gravity. Prog. Theor. Phys. 2009, 122, 561. [Google Scholar] [CrossRef]
- Cambiaso, M.; Urrutia, L.F. An extended solution space for Chern–Simons gravity: The slowly rotating Kerr black hole. Phys. Rev. D 2010, 82, 101502. [Google Scholar] [CrossRef]
- Yagi, K.; Yunes, N.; Tanaka, T. Slowly Rotating Black Holes in Dynamical Chern–Simons Gravity: Deformation Quadratic in the Spin. Phys. Rev. D 2012, 86, 044037, Erratum in 2014, 89, 049902. [Google Scholar] [CrossRef]
- Stein, L.C. Rapidly rotating black holes in dynamical Chern–Simons gravity: Decoupling limit solutions and breakdown. Phys. Rev. D 2014, 90, 044061. [Google Scholar] [CrossRef]
- Konno, K.; Takahashi, R. Scalar field excited around a rapidly rotating black hole in Chern–Simons modified gravity. Phys. Rev. D 2014, 90, 064011. [Google Scholar] [CrossRef]
- McNees, R.; Stein, L.C.; Yunes, N. Extremal black holes in dynamical Chern–Simons gravity. Class. Quant. Grav. 2016, 33, 235013. [Google Scholar] [CrossRef]
- Delsate, T.; Herdeiro, C.; Radu, E. Non-perturbative spinning black holes in dynamical Chern–Simons gravity. Phys. Lett. B 2018, 787, 8. [Google Scholar] [CrossRef]
- Taub, A.H. Empty space-times admitting a three parameter group of motions. Annals Math. 1951, 53, 472. [Google Scholar] [CrossRef]
- Newman, E.T.; Tamburino, L.; Unti, T. Empty space generalization of the Schwarzschild metric. J. Math. Phys. 1963, 4, 915. [Google Scholar] [CrossRef]
- Misner, C.W. Taub-NUT space as a counterexample to almost anything. Relat. Theory Astrophys. 1967, 1, 160. [Google Scholar]
- Misner, C.W. Relativity Theory and Astrophysics I: Relativity and Cosmology; Ehlers, J., Ed.; Lectures in Applied Mathematics; American Mathematical Society: Providence, RI, USA, 1967; Volume 8, p. 160. [Google Scholar]
- Bonnor, W.B. A new interpretation of the NUT metric in general relativity. Proc. Camb. Phil. Soc. 1969, 66, 145. [Google Scholar] [CrossRef]
- Bonnor, W.B. The interactions between two classical spinning particles. Class. Quant. Grav. 2001, 18, 1381. [Google Scholar] [CrossRef]
- Manko, V.S.; Ruiz, E. Physical interpretation of NUT solution. Class. Quant. Grav. 2005, 22, 3555. [Google Scholar] [CrossRef]
- Brihaye, Y.; Herdeiro, C.; Radu, E. The scalarised Schwarzschild-NUT spacetime. Phys. Lett. B 2019, 788, 295. [Google Scholar] [CrossRef]
- Brihaye, Y.; Radu, E. Remarks on the Taub-NUT solution in Chern–Simons modified gravity. Phys. Lett. B 2017, 764, 300. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395. [Google Scholar] [CrossRef]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP: Woodbury, NY, USA, 1995. [Google Scholar]
- Lobo, F.S. Introduction. Fundam. Theor. Phys. 2017, 189, 1. [Google Scholar]
- Visser, M.; Kar, S.; Dadhich, N. Traversable wormholes with arbitrarily small energy condition violations. Phys. Rev. Lett. 2003, 90, 201102. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Dadhich, N.; Visser, M. Quantifying energy condition violations in traversable wormholes. Pramana 2004, 63, 859. [Google Scholar] [CrossRef]
- Hochberg, D. Lorentzian wormholes in higher order gravity theories. Phys. Lett. 1990, B251, 349. [Google Scholar] [CrossRef]
- Fukutaka, H.; Tanaka, K.; Ghoroku, K. Wormhole Solutions In Higher Derivative Gravity. Phys. Lett. B 1989, 222, 191. [Google Scholar] [CrossRef]
- Ghoroku, K.; Soma, T. Lorentzian wormholes in higher derivative gravity and the weak energy condition. Phys. Rev. 1992, D46, 1507. [Google Scholar] [CrossRef]
- Furey, N.; De Benedictis, A. Wormhole throats in Rm gravity. Class. Quant. Grav. 2005, 22, 313. [Google Scholar] [CrossRef]
- Eiroa, E.F.; Richarte, M.G.; Simeone, C. Thin-shell wormholes in Brans-Dicke gravity. Phys. Lett. A 2008, 373, 1. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Elizalde, E. Spherical systems in models of nonlocally corrected gravity. Phys. Rev. D 2010, 81, 044032. [Google Scholar] [CrossRef]
- Antoniou, G.; Bakopoulos, A.; Kanti, P.; Kleihaus, B.; Kunz, J. Novel Einstein-scalar–Gauss–Bonnet wormholes without exotic matter. Phys. Rev. D 2020, 101, 024033. [Google Scholar] [CrossRef]
- Kanti, P.; Kleihaus, B.; Kunz, J. Wormholes in Dilatonic Einstein-Gauss–Bonnet Theory. Phys. Rev. Lett. 2011, 107, 271101. [Google Scholar] [CrossRef]
- Kanti, P.; Kleihaus, B.; Kunz, J. Stable Lorentzian Wormholes in Dilatonic Einstein-Gauss–Bonnet Theory. Phys. Rev. D 2012, 85, 044007. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Oliveira, M.A. Wormhole geometries in f(R) modified theories of gravity. Phys. Rev. D 2009, 104012. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Mak, M.K.; Sushkov, S.V. Modified-gravity wormholes without exotic matter. Phys. Rev. D 2013, 87, 067504. [Google Scholar] [CrossRef]
- Kanti, P.; Mavromatos, N.E.; Rizos, J.; Tamvakis, K.; Winstanley, E. Dilatonic Black Holes in Higher Curvature String Gravity. Phys. Rev. D 1996, 54, 5049. [Google Scholar] [CrossRef] [PubMed]
- Ibadov, R.; Kleihaus, B.; Kunz, J.; Murodov, S. Wormholes in Einstein-scalar–Gauss–Bonnet theories with a scalar self-interaction potential. Phys. Rev. D 2020, 102, 064010. [Google Scholar] [CrossRef]
- Israel, W. Singular hypersurfaces and thin shells in general relativity. Nuovo Cim. B 1966, 44S10, 1, Erratum in 1967, 48, 463. [Google Scholar]
- Davis, S.C. Generalized Israel junction conditions for a Gauss–Bonnet brane world. Phys. Rev. D 2003, 67, 024030. [Google Scholar] [CrossRef]
- Kleihaus, B.; Kunz, J.; Kanti, P. Particle-like ultracompact objects in Einstein-scalar–Gauss–Bonnet theories. Phys. Lett. B 2020, 804, 135401. [Google Scholar] [CrossRef]
- Kleihaus, B.; Kunz, J.; Kanti, P. Properties of ultracompact particlelike solutions in Einstein-scalar–Gauss–Bonnet theories. Phys. Rev. D 2020, 102, 024070. [Google Scholar] [CrossRef]
- Clément, G.; Gal’tsov, D.; Guenouche, M. NUT wormholes. Phys. Rev. D 2016, 93, 024048. [Google Scholar] [CrossRef]
- Brihaye, Y.; Renaux, J. Scalarized-charged wormholes in Einstein-Gauss–Bonnet gravity. arXiv 2020, arXiv:2004.12138. [Google Scholar]
- Odintsov, S.D.; Oikonomou, V.K. Inflationary Phenomenology of Einstein Gauss–Bonnet Gravity Compatible with GW170817. Phys. Lett. B 2019, 797, 134874. [Google Scholar] [CrossRef]
- Oikonomou, V.K.; Fronimos, F.P. Reviving non-Minimal Horndeski-like Theories after GW170817: Kinetic Coupling Corrected Einstein-Gauss–Bonnet Inflation. arXiv 2020, arXiv:2006.05512. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibadov, R.; Kleihaus, B.; Kunz, J.; Murodov, S. Scalarized Nutty Wormholes. Symmetry 2021, 13, 89. https://doi.org/10.3390/sym13010089
Ibadov R, Kleihaus B, Kunz J, Murodov S. Scalarized Nutty Wormholes. Symmetry. 2021; 13(1):89. https://doi.org/10.3390/sym13010089
Chicago/Turabian StyleIbadov, Rustam, Burkhard Kleihaus, Jutta Kunz, and Sardor Murodov. 2021. "Scalarized Nutty Wormholes" Symmetry 13, no. 1: 89. https://doi.org/10.3390/sym13010089
APA StyleIbadov, R., Kleihaus, B., Kunz, J., & Murodov, S. (2021). Scalarized Nutty Wormholes. Symmetry, 13(1), 89. https://doi.org/10.3390/sym13010089