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Abstract: We construct scalarized wormholes with a NUT charge in higher curvature theories. We
consider both Einstein-scalar-Gauss-Bonnet and Einstein-scalar-Chern-Simons theories, following
Brihaye, Herdeiro and Radu, who recently studied spontaneously scalarised Schwarzschild-NUT
solutions. By varying the coupling parameter and the scalar charge we determine the domain of
existence of the scalarized nutty wormholes, and their dependence on the NUT charge. In the
Gauss-Bonnet case the known set of scalarized wormholes is reached in the limit of vanishing NUT
charge. In the Chern-Simons case, however, the limit is peculiar, since with vanishing NUT charge
the coupling constant diverges. We focus on scalarized nutty wormholes with a single throat and
study their properties. All these scalarized nutty wormholes feature a critical polar angle, beyond
which closed timelike curves are present.
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1. Introduction

The fascinating phenomenon of scalarization has led to a large variety of interesting
observations in the context of compact objects. Scalarization arises, when the generalized
Einstein–Klein–Gordon equations lead to solutions with a non-trivial scalar field, caused
by the presence of an adequate source term. Depending on the properties of this source
term distinct types of scalarized solutions arise. When the source term in the scalar field
equation does not vanish for vanishing scalar field, all solutions will be scalarized, and
the solutions of ordinary General Relativity (GR) will not be solutions of the coupled set
of field equations. In contrast, when the source term in the scalar field equation does
vanish for vanishing scalar field the GR solutions do remain solutions of the generalized
set of field equations. However, they develop tachyonic instabilities, where new scalarized
solutions arise.

The latter phenomenon was first observed for neutron stars in scalar-tensor theories [1]
where it is referred to as matter-induced spontaneous scalarization, since the source term
for the scalar field is provided by the highly compact nuclear matter. Only much more
recently it was observed that in the case of the vacuum black holes of GR spontaneous
scalarization is possible as well, when another type of source term for the scalar field is
provided. Coupling the higher curvature Gauss–Bonnet (GB) invariant to the scalar field
with an appropriate coupling function curvature-induced spontaneously scalarized black
holes arise, representing scalarized Schwarzschild and Kerr black holes [2–24]. Moreover,
the curvature-induced spontaneous scalarized Kerr black holes come in two types, those
that arise in the slow rotation limit from the scalarized Schwarzschild black holes, and
those that do not possess a slow rotation limit [25–27]. We note that for GB theories with
coupling functions allowing for spontaneous scalarization the current constraints from
gravitational waves produced in binary black hole mergers can be avoided, since the scalar
field can be set to zero in cosmological applications, implying the cosmological standard
results. In the case of localized compact objects, however, the deviation of the speed of
gravitational waves from the speed of light decays rapidly with distance [28–30].
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An alternative higher curvature invariant to study curvature-induced spontaneously
scalarized black holes is the Chern–Simons (CS) invariant. However, in the static case of
the Schwarzschild metric the invariant vanishes, and therefore no spontaneously scalarized
Schwarzschild black holes arise. This is different for the Kerr metric, since rotation leads to
a finite CS source term for the scalar field [31–38], which should allow for spontaneously
scalarized Kerr black holes. In order to learn about scalarized rotating CS black holes
without having to deal with the full complexity of the challenging set of the resulting
coupled partial differential equations, one may first resort to the technically much simpler
case and include a NUT charge [39–45] instead of rotation, as pursued successfully by
Brihaye et al. [46,47]. In that case, a much simpler set of ordinary differential equations
(ODEs) results, since the angular dependence of the scalarized solutions factorizes.

Inspired by Brihaye et al. [46,47], we here follow their motivation and apply this strat-
egy to wormholes, constructing scalarized nutty wormholes in higher curvature theories
employing either a GB term or a CS term as source term for the scalar field. Following
Brihaye et al. [46], we here employ a quadratic coupling function. The spontaneously
scalarized Schwarzschild-NUT solutions of [46] then represent one of the boundaries of the
domain of existence of the scalarized nutty wormholes. However, the wormhole solutions
are not spontaneously scalarized, since when the scalar field vanishes, pure vacuum GR is
retained, and there are no Lorentzian traversable wormhole solutions in vacuum GR (see
e.g., [48–52]).

To obtain traversable wormhole solutions the energy conditions must be violated.
In GR this can be achieved by the presence of exotic matter. However, by allowing for
alternative theories of gravity traversable wormholes can be obtained without the need
for exotic matter (see e.g., [53–63]). Employing the string theory motivated dilaton-GB
coupling, static scalarized wormholes were shown to exist, and their domain of existence
and their properties were studied before [59–61]. In the dilatonic case, the black hole
boundary of the domain of existence corresponds to static dilatonic black holes [64]. For
other coupling functions, which give rise to spontaneously scalarized GB black holes, the
black hole boundary of the domain of existence of scalarized wormholes [59,65] consists of
the corresponding spontaneously scalarized black holes [2–4].

The domain of existence of scalarized wormholes is further bounded by a set of solu-
tions, where singularities are encountered, and by a set of solutions, where the wormhole
throat becomes degenerate [59–61,65]. In the latter case, this degeneracy reveals, that in
addition to wormholes with a single throat also wormholes with an equator and a double
throat exist. The throat(s) and equator arise naturally in these solutions in one of the two
parts of the spacetime. However, when simply continuing the solutions beyond the throat
(or equator) a singularity will invariably be encountered. In order to obtain wormholes
without such singularities, symmetry has been imposed with respect to the throat (or equa-
tor). This entails that a thin shell of matter is needed at the throat (or equator), to satisfy the
respective Israel junction conditions [66,67]. Typically, this matter can be ordinary matter,
thus no exotic matter is needed [59–61,65].

Here we generalize these scalarized wormhole solutions in two ways. On the one
hand, we include a NUT charge and on the other hand we consider besides the GB invariant
also the CS invariant. The presence of the NUT charge implicates a Misner string on the
polar axis. Therefore the resulting spacetimes are not asymptotically flat in the usual
sense. However, all unknown functions of the wormhole solutions are only functions of the
radial coordinate, and their asymptotic fall-off is of the usual type of an asymptotically flat
spacetime, as in the case of scalarized Schwarzschild-NUT solutions [46,47]. As always, the
presence of a NUT charge gives rise to closed timelike curves, since the metric component
of the azimuthal angle, gϕϕ, changes sign in the manifold at a critical value of the polar
angle θ. Here we show that all scalarized nutty wormhole solutions possess such a critical
polar angle at their throat. In the black hole limit the throat changes into a horizon, where
the critical polar angle goes to zero.
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The paper is organized as follows: In Section 2 we present the actions involving the
GB and the CS term and exhibit the equations of motion for both cases. We then discuss the
boundary conditions, the conditions for the center, i.e., the throat (or equator), the junction
conditions, and the null energy condition (NEC). Subsequently we address the numerical
procedure and present our results in Section 3. These include, in particular, the profile
functions for the scalarized nutty wormhole solutions, the violation of the NEC, the domain
of existence with its outer boundaries, and an analysis of the junction conditions for the
thin shell of matter at the throat. We give our conclusions and an outlook in Section 4.

2. Theoretical Setting
2.1. Action and Equations of Motion

Following Brihaye et al. [46], we consider the effective action for Einstein-scalar-higher
curvature invariant theories

S =
1

16π

∫ [
R− 1

2
∂µφ ∂µφ + F(φ)I(g)

]√
−gd4x , (1)

where R is the curvature scalar, and φ denotes the massless scalar field without self-
interaction, that is coupled with some coupling function F(φ) to an invariant I(g). For the
coupling function F(φ) we choose a quadratic φ-dependence with coupling constant α,

F(φ) = αφ2 , (2)

the simplest choice leading to curvature-induced spontaneous scalarization of black holes.
For the invariant I(g) we make two choices, (i) the Gauss–Bonnet term

I(g) = R2
GB = RµνρσRµνρσ − 4RµνRµν + R2 , (3)

and (ii) the Chern–Simons term

I(g) = R2
CS =∗Rµ

ν
ρσ

Rν
µρσ , (4)

where the Hodge dual of the Riemann-tensor ∗Rµ
ν

ρσ
= 1

2 ηρσκλRµ
νκλ is defined with the 4-

dimensional Levi-Civita tensor ηρσκλ = εργστ/
√−g. While both invariants are topological

in four dimensions, the coupling to the scalar field φ via the coupling function F(φ)
provides significant contributions to the equations of motion.

We obtain the coupled set of field equations by varying the action (1) with respect to
the scalar field and to the metric,

∇µ∇µφ +
dF(φ)

dφ
I = 0 , (5)

Gµν =
1
2

T(eff)
µν , (6)

where Gµν is the Einstein tensor and T(eff)
µν denotes the effective stress-energy tensor

T(eff)
µν = T(φ)

µν + T(I)
µν , (7)

which consists of the scalar field contribution

T(φ)
µν =

(
∇µφ

)
(∇νφ)− 1

2
gµν

(
∇ρ φ

)
(∇ρφ) , (8)

and a contribution from the respective invariant I(g). For the chosen invariants we
obtain (i)

T(GB)
µν =

(
gρµgλν + gλµgρν

)
ηκλαβ∗Rργ

αβ∇γ∇κ F(φ) , (9)
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and (ii)
T(CS)µν = −8

[
∇ρF(φ)

]
ερστ(µ∇τ Rν)

σ
+
[
∇ρ∇σF(φ)

]∗Rσ(µν)ρ. (10)

To obtain static, spherically symmetric wormhole solutions with a NUT charge N we
assume the line element to be of the form

ds2 = −e f0(dt− 2N cos θdϕ)2 + e f1
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
, (11)

All three functions, the two metric functions f0 and f1 and the scalar field function φ,
depend only on the radial coordinate r.

When we insert the above ansatz (11) for the metric and the scalar field into the scalar-
field Equation (5) and the Einstein Equation (6) with effective stress-energy tensor (7),
we obtain five coupled, nonlinear ODEs. However, these are not independent, since the
θ-dependence factorizes, and one ODE can be treated as a constraint. This leaves us with
three coupled ODEs of second order. Note that in case (i) the system can be reduced to one
first order and two second order ODEs.

Inspection of the field equations reveals an invariance under the scaling transformation

r → χr , N → χN , t→ χt , F → χ2F , (12)

with constant χ > 0.

2.2. Throats, Equators, and Boundary Conditions

In order to obtain scalarized nutty wormhole solutions, we need to impose an appro-
priate set of boundary conditions for the ODEs, which we now address. We first introduce
the circumferential (or spherical) radius

RC = e
f1
2 r (13)

of the wormhole spacetimes, which may possess one or more finite extrema. If there is a
single finite extremum, this corresponds to the single throat of the respective wormholes.
Here we will mainly consider such single throat wormholes, thus featuring a single mini-
mum. But wormholes with more extrema may also exist. They might, for instance, possess
a local maximum surrounded by two minima. The local maximum would then correspond
to their equator, while the two minima would represent their two throats, making them
double throat wormholes.

To obtain the first set of boundary conditions we therefore require the presence of an
extremum of the spherical radius at some r = r0. This yields

dRC
dr

∣∣∣∣
r=r0

= 0 ⇐⇒ d f1

dr

∣∣∣∣
r=r0

= − 2
r0

. (14)

Some details on the condition R′′C(r0) > 0 are given in the Appendix A. In the following
we will refer to the two-dimensional submanifolds defined by r = r0 and t = const. as the
center of the configurations.

We note that the presence of a NUT charge leads to an interesting feature of these
wormholes. Unlike the usual case, the throat metric of these nutty wormholes

ds2
th = e f1(r0)r2

0

(
dθ2 +

[
sin2 θ − 4N2

r2
0

e f0(r0)− f1(r0) cos2 θ

]
dϕ2

)
(15)
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changes its signature at the critical angles θc and π − θc, where the coefficient of dϕ2 changes
sign. We obtain θc from the condition det(gth) ≥ 0, which requires θc ≤ θ ≤ π − θc with

θc = arctan
(

2|N|
r0

e
f0− f1

2

)∣∣∣∣
r0

. (16)

Only for θc ≤ θ ≤ π − θc the signature of the metric is positive, as required for a
two-dimensional Riemannian surface. The change of signature is a consequence of the
non-causal structure of a spacetime in the presence of a NUT charge N, which allows for
closed timelike curves.

We obtain the second set of boundary conditions by requiring the usual boundary
conditions for r → ∞ [46]. The associated asymptotic expansions of the metric functions
and the scalar field read

f0 = −2M
r

+O
(

r−3
)

, (17)

f1 =
2M

r
+O

(
r−2
)

, (18)

φ = φ∞ −
D
r
+O

(
r−3
)

, (19)

where M denotes the mass of the wormholes and D corresponds to their scalar charge. The
quantity φ∞ represents the asymptotic value of the scalar field. We note that all higher
order terms in the expansion can be expressed in terms of M, D and φ∞. Thus the solution
is uniquely determined by these quantities (and parameters of the theory). Since we are
interested in the relation of the wormhole solutions to the spontaneously scalarized black
hole solutions of Brihaye et al. [46] we need to choose the same asymptotic value φ∞ = 0.

2.3. Junction Conditions

In order to obtain wormholes whose geometry is symmetric with respect to the center
and which do not possess any singularity (apart from the Misner string), we need to impose
junction conditions at the center. For the discussion of the junction conditions it is useful to
introduce the radial coordinate η,

η = r0

(
r
r0
− r0

r

)
, (20)

where r0 is a constant. We then define the constant η0 via η0 = 2r0. In terms of the new
radial coordinate η the metric reads

ds2 = −e f0(dt− 2N cos θdϕ)2 + eF1
[
dη2 +

(
η2 + η2

0

)(
dθ2 + sin2 θdϕ2

)]
, (21)

where we have introduced the new metric function F1,

eF1 = e f1

(
1 +

r2
0

r2

)−2

.

Thus the center is located at η = 0, and the solution on the η ≤ 0 part of the manifold
can be obtained from the solution on the η ≥ 0 part of the manifold by imposing the
symmetry conditions f0(−η) = f0(η), F1(−η) = F1(η) and φ(−η) = φ(η). However,
these conditions generically introduce jumps in the derivatives of the functions f0 and φ
at the center η = 0, which may be attributed to a thin shell of matter that is localized at
the center.
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To properly embed such a thin shell of matter in the complete wormhole solution, we
make use of an appropriate set of junction conditions [66,67]. In particular, we consider
jumps in the coupled set of Einstein and scalar field equations that arise when η → −η,

〈Gµ
ν − Tµ

ν〉 = sµ
ν , 〈∇2φ + ḞI〉 = sscal , (22)

with the abbreviation dF(φ)/dφ = Ḟ for the derivative of the coupling function. Here we
have denoted the stress-energy tensor of the matter at the center by sµ

ν, and the source
term for the scalar field by sscal. We would like the matter forming the thin shells to be
some form of ordinary (non-exotic) matter. We will therefore assume that there is a perfect
fluid at the center which has pressure p and energy density εc, and that there is a scalar
charge density ρscal together with a gravitational source [60,61]

SΣ =
∫
[λ1 + 2λ0F(φ)R̄]

√
−h̄d3x , (23)

that has been employed before for GB wormholes without NUT charge. Here we have
introduced the constants λ1 and λ0, h̄ab denotes the induced metric at the center, and R̄
denotes the associated Ricci scalar. In order to obtain the junction conditions, we substitute
the metric into the set of equations (22).

Now we derive the junction conditions for both invariants separately. Note, that here
and in the following all functions and derivatives are evaluated at the center. In the case of
the Gauss–Bonnet invariant we find the equations

4
η2

0
Ḟφ′
(

η2
0e−

3
2 F1 + 3N2e f0− 5

2 F1
)

= λ1η2
0 + 4λ0F

η2
0e−F1 + 3N2e f0−2F1

η2
0

− εcη2
0 , (24)

N cos θ

[
η2

0 f ′0e−
F1
2 − 8Ḟφ′

(
e−

3
2 F1 +

4N2

η2
0

e f0− 5
2 F1

)]
= 2N cos θ

[
(εc + p)η2

0 − 4λ0F
η2

0e−F1 + 4N2e f0−2F1

η2
0

]
, (25)

η2
0 f ′0
2

e−
F1
2 − 4N2

η2
0

Ḟφ′e f0− 5
2 F1 = pη2

0 + λ1η2
0 − 4λ0N2F

e f0−2F1

η2
0

, (26)

e−F1 φ′ − 4
Ḟ
η4

0
f ′0
(

η2
0e−2F1 + 3N2e f0−3F1

)
= −4λ0

Ḟ
η4

0

(
η2

0e−F1 + N2e f0−2F1
)
+

ρscal
2

, (27)

which follow from the
(t

t
)
,
(

t
ϕ

)
, and

(
ϕ
ϕ

)
components of the Einstein equations and from

the scalar field equation, respectively. Note that the
(

θ
θ

)
equation is equivalent to the

(
ϕ
ϕ

)
equation, and that all other equations are satisfied trivially. We also remark that the θ

dependence in the
(

t
ϕ

)
equation factorizes, and that this equation is satisfied once the

(t
t
)

and
(

ϕ
ϕ

)
equations are solved.

As an example we consider pressureless matter, p = 0. With

λ0 =
Ḟ
F

e−
F1
2 φ′ , λ1 =

f ′0
2

e−
F1
2 , (28)

we find the simple result

εc =
f ′0
2

e−
F1
2 . (29)

Since for our solutions f ′0 > 0 the energy density εc is always positive for this choice
of the constants λ0 and λ1.

We now turn to case of the Chern–Simons invariant where we find the equations
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8NḞφ′ f ′0e
f0
2 e−2F1 = λ1η2

0 + 4λ0F
η2

0e−F1 + 3N2e f0−2F1

η2
0

− εcη2
0 , (30)

N cos θ f ′0

(
η2

0e−
F1
2 − 24NḞφ′e

f0
2 −2F1

)
= 2N cos θ(εc + p)η2

0 − 8N cos θλ0F
η2

0e−F1 + 4N2e f0−2F1

η2
0

, (31)

f ′0
2

(
η2

0e−
F1
2 − 8NḞφ′e

f0
2 −2F1

)
= pη2

0 + λ1η2
0 − 4λ0N2F

e f0−2F1

η2
0

, (32)

e−F1 φ′ − 4N
Ḟ
η2

0
( f ′0)

2e
f0−5F1

2 = −4λ0
Ḟ
η4

0

(
η2

0e−F1 + N2e f0−2F1
)
+

ρscal
2

, (33)

which follow again from the
(t

t
)
,
(

t
ϕ

)
,
(

ϕ
ϕ

)
components of the Einstein equations and

the scalar field equation, respectively.
Again we consider as an example pressureless matter, p = 0. With

λ0 =
η2

0 Ḟ
NF

e−
f0
2 , λ1 = −

f ′0
2

e−
F1
2 , (34)

we now find

εc =
f ′0

2N

(
Ne−

F1
2 + 8Ḟφ′e−

f0
2 −F1

)
+

4N
η2

0
Ḟφ′ f ′0e

f0
2 −2F1 . (35)

2.4. Energy Conditions

In wormhole solutions the null energy condition (NEC)

Tµνnµnν ≥ 0 (36)

must be violated, where nµ is any null vector (nµnµ = 0). Thus it is sufficient to show that
null vectors exist, such that Tµνnµnν < 0 in some spacetime region. Such a null vector nµ is
given by

nµ =
(

1,
√
−gtt/gηη , 0, 0

)
, (37)

and thus nµ =
(

gtt,
√
−gtt gηη , 0, 0

)
. The NEC then takes the form

Tµνnµnν = Tt
t ntnt + Tη

η nηnη = −gtt (−Tt
t + Tη

η ) . (38)

Consequently the NEC is violated when

− Tt
t + Tη

η < 0 . (39)

Alternatively, considering the null vector

nµ =
(

1, 0,
√
−gtt/gθθ , 0

)
, (40)

the NEC is violated when
− Tt

t + Tθ
θ < 0 . (41)

These conditions have been addressed before for various scalarized wormhole so-
lutions [48,59–61]. We analyze these conditions in Section 3.2 for the scalarized nutty
wormholes.
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3. Results
3.1. Numerics

In order to solve the coupled Einstein and scalar field equations numerically we
introduce the inverse radial coordinate x = 1/r. The asymptotic region r → ∞ then
corresponds to x → 0. In this region the expansion of the metric functions and the scalar
field reads (see Equations (17)–(19))

f0 = −2Mx +O
(

x3
)

, f1 = 2Mx +O
(

x2
)

, φ = φ∞ − Dx +O
(

x3
)

. (42)

We treat the system of ODEs as an initial value problem, for which we employ the
fourth order Runge Kutta method. From the above expansion we read off the initial values,

f0,ini = 0 , f ′0,ini = −2M , f1,ini = 0 , f ′1,ini = 2M , φini = 0 , φ′ini = −D . (43)

The computation then starts at spatial infinity, x = 0, and ends at the center at some finite
x = x0, where the condition (14) is reached. Note that the initial conditions determine the
solution uniquely, as discussed in Section 2.2 There is no fine-tuning of parameters needed.

3.2. Solutions

By following the above numerical procedure we obtain the sets of nutty wormhole
solutions for both invariants I(g). Here we demonstrate some typical solutions for both
cases. We exhibit in Figure 1 the metric profile functions e f0 , eF1 , and the scalar field
function φ versus the radial coordinate η/M for the GB invariant (a) and the CS invariant
(b), choosing parameters α/M2 = 2.5, D/M = 2 and n = N/M = 3, and α/M2 = 4,
D/M = 1 and n = N/M = 3, respectively. The figures also show the circumferential
radius Rc/η0 versus η/M (η0/M = 0.517: GB invariant, η0/M = 0.495: CS invariant). As
required, Rc reaches an extremum at the center η = 0. We note that the solutions have
rather similar properties for both invariants.

To see that the wormhole solutions violate the energy conditions, we inspect the
components of the effective energy momentum tensor, Tt

t , Tt
φ, Tη

η , and Tθ
θ . These are

shown for the same solutions and the GB and CS invariants in Figure 1c,d, respectively.
In particular, we note, that the component Tη

η is negative in the vicinity of the center for
both invariants. Moreover, all components are negative in some region of the spacetime.
We exhibit in Figure 1e,f the NEC conditions −Tt

t + Tη
η ≥ 0 and −Tt

t + Tθ
θ ≥ 0 for the GB

and CS invariants, respectively. The figures clearly demonstrate the NEC violation for
both invariants.
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Figure 1. Examples of nutty wormhole solutions (left plots: Gauss–Bonnet with parameters α/M2 = 2.5, D/M = 2 and
n = N/M = 3, right plots: Chern–Simons with α/M2 = 4, D/M = 1 and n = N/M = 3): (a,b) metric profile functions
e f0 , eF1 , scalar field function φ, and scaled circumferential radius Rc/η0 vs radial coordinate η; (c,d) stress-energy tensor
components Tt

t , Tt
φ, Tη

η , and Tθ
θ vs. radial coordinate η/M; (e,f) NEC conditions −Tt

t + Tη
η ≥ 0 and −Tt

t + Tθ
θ ≥ 0 vs radial

coordinate η.

3.3. Domain of Existence

We now address the domain of existence of these nutty wormhole solutions. We
exhibit the domain of existence in Figure 2 for the GB (left) and CS (right) invariants, for
a set of values of the scaled NUT charge n = N/M. In particular, we show the outer
boundaries of the respective domains of existence, by presenting the scaled coupling
constant α/M2 versus the scaled scalar charge D/M.

The existence of the wormhole solutions requires the presence of a non-trivial scalar
field. Since the equations are invariant under the transformation φ→ −φ, the domain of
existence is symmetric with respect to D → −D, and it is sufficient to only exhibit D ≥ 0.
For D = 0 the scalar field vanishes, and thus D = 0 represents the trivial boundary of
the domain of existence, where pure GR solutions reside. The first non-trivial boundary
corresponds to scalarized nutty black holes, and is shown by the solid red curves. These
scalarized black holes were obtained before by Brihaye et al. [46]. Here the center/throat
turns into a black hole horizon.
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Figure 2. Domain of existence ((left) plot: Gauss–Bonnet, (right) plot: Chern–Simons) for several values of the scaled NUT
charge n = N/M: scaled coupling constant α/M2 vs scaled scalar charge D/M. The solid red curves represent the black
hole limit, the dashed green curves the degenerate wormhole limit, and the dotted blue curves the singular limit.

The second non-trivial boundary in the figures is termed degenerate and shown by the
dashed green curves. To understand this boundary, we recall the numerical construction
of the solutions. The calculation is ended, when an extremum is reached. However, in
principle, we can continue the calculation beyond the extremum, where we might find
a second extremum. The first one then corresponds to a throat while the second one
corresponds to an equator. As the coupling constant is varied, the two extrema will
approach each other until finally a degenerate extremum is reached. This third boundary
represents precisely the values of the coupling constant, where such a degenerate extremum
is reached.

The last boundary has been labeled singular, and is shown by the dotted blue curves.
At this boundary the calculations reveal the appearance of a singularity somewhere in
the spacetime, that is of the cusp type (see [59,65,68,69]). Their presence is due to the
emergence of a node at some value of the radial coordinate η? in the determinant, that
arises upon diagonalisation of the ODEs. These cusp singularities seem to be a rather
common feature of scalarized wormholes. Here we see, that they do not only arise for GB
theories, but are also present for CS theories.

The figures also show, that the domain of existence of wormhole solutions increases
strongly with increasing NUT charge. For the GB coupling, the limit of vanishing NUT
charge leads to the scalarized wormhole solutions of Antoniou et al. [59]. For the CS
coupling, the vanishing of the NUT charge needs special attention, since in this case two
branches of solutions arise, as shown for the Schwarzschild-NUT solutions by Brihaye
et al. [46]. Along the first branch the coupling constant decreases with decreasing NUT
charge, analogous to the GB case. However, along the second branch the coupling constant
increases with decreasing NUT charge. This is seen in Figure 2(right), where the solutions
for n = N/M = 3, 2 and 1 are on the first branch, while the solutions for n = N/M = 0.5
are already on the second branch. Interestingly, the smaller the values of the NUT charge,
the larger the values of the coupling constant that are necessary to obtain scalarized
solutions. In fact, both conspire in such a way, that a finite domain arises also in the CS
case in the limit N → 0 as further discussed below.

3.4. Throat Properties

We next address properties of the wormhole center, and since we do not consider
equators here, but only throats, we refer to these properties as throat properties. In
particular, we consider the value of the circumferential radius RC, Equation (13), at the
throat which we denote by Rth, the value of the metric function e f0 , and the value of the
critical angle θc, Equation (16). For these properties we delimit their domains of existence
in Figure 3, by the extracting the boundaries of the respective domains. As before we show
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the black hole limit by solid red curves, the degenerate limit by dashed green curves, and
the singular limit by dotted blue curves.
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Figure 3. Properties at the throat (left plots: Gauss–Bonnet, right plots: Chern–Simons) for several values of the scaled NUT
charge n = N/M: (a,b) scaled circumferential radius Rth/M, (c,d) metric function e f0 , (e,f) scalar field φth vs scaled scalar
charge D/M. The solid red curves represent the black hole limit, the dashed green curves the degenerate wormhole limit,
and the dotted blue curves the singular limit.

We exhibit the domain of the scaled value Rth/M versus the scaled scalar charge
D/M in Figure 3 for the GB invariant (a) and the CS invariant (b) for several values of the
NUT charge n = N/M. We note that for a fixed value of the NUT charge n = N/M, in the
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limit of vanishing scalar charge (D/M→ 0) the same solution is approached for both the
GB invariant (a) and the CS invariant (b). In this limit the scalar field vanishes identically,
and thus there are no wormhole solutions. The limiting solution therefore corresponds to a
Schwarzschild-NUT black hole solution, for which the value of Rth/M depends only on
the value of the NUT charge n = N/M.

When taking the NUT charge to zero, the boundary composed of scalarized black
holes remains finite. In the GB case the scalarized Schwarzschild solutions are approached.
In the CS case the coupling constant diverges, as the NUT charge goes to zero, leaving a
finite value for the source term of the scalar field. In fact a new coupling constant might
be considered, α′ = α/N such that α′ is finite and might be varied. Thus a peculiar set of
limiting solutions arises, that starts from the Schwarzschild black hole with R/M = 2 at
D/M = 0 and forms the black hole boundary.

Considering the full domain of existence, in the GB case in the limit n = N/M→ 0
the known finite domain of scalarized wormhole solutions is approached [59]. In the CS
case the limit n = N/M→ 0 leads to a finite domain of solutions as well, albeit solutions
resulting from a peculiar cancellation. Nevertheless, the change of the domain of existence
of the circumferential radius Rth/M is completely smooth in the limit n = N/M→ 0, as
calculations for several small values of n = N/M have shown. The limiting domain is seen
in Figure 3b. In this figure it does not make a difference whether the solutions are on the
first (large n = N/M) or second (small n = N/M) branch.

Inspection of the metric function e f0 , shown versus the scaled scalar charge D/M in
Figure 3 for the GB invariant (c) and the CS invariant (d), yields full agreement with the
above discussion. In the black hole limit the metric function vanishes as it must, while the
boundary of degenerate scalarized wormholes approaches also the black hole limit in the
limit of vanishing scalar charge, D/M→ 0. On the other hand, the boundary of singular
wormholes connects to the scalarized nutty black holes and contains the maximal value
of this metric function for a given value of the NUT charge n = N/M. This maximum
remains finite for n = N/M→ 0.

The scalar field at the throat φth is exhibited versus the scaled scalar charge D/M in
Figure 3 for the GB invariant (e) and the CS invariant (f). As argued above, for D/M→ 0
the scalar field vanishes, and thus also φth → 0. Analogous to the metric function e f0 , for a
given NUT charge n = N/M a maximum of φth is reached on the singular boundary, and
for n = N/M→ 0 the maximum remains finite.

3.5. Junction Conditions and Critical Polar Angle

As discussed above we need to satisfy junction conditions in order to obtain sym-
metric wormholes without singularities (except for the Misner string). We have therefore
introduced an action at the center and allowed for a thin shell of matter in the form of a
perfect fluid with energy density εc. Since we here focus only on wormholes with a single
throat, we denote this energy density by εth. We exhibit in Figure 4 εth for a pressureless
fluid for several sets of wormhole solutions with fixed values of the scaled scalar charge
D/M and NUT charge n = N/M = 1 versus the scaled coupling constant α/M2 for the
GB invariant (a) and the CS invariant (b).

The boundaries of these sets of solutions are given by the dashed green curves,
representing the degenerate wormhole limit, and the dotted blue curves, representing the
singular limit. We note, that the energy density εth is positive in all cases shown. Thus
these wormholes need only ordinary matter at the throat to remain open.

Last we address the critical polar angle at the center θc, Equation (16). Denoting the
critical polar angle at the throat by θth, we exhibit θth also in Figure 4 versus the scaled
coupling constant α/M2 for the same sets of solutions for the GB invariant (c) and the
CS invariant (d). The critical angle reaches its maximal value of about θth,max ≈ 0.19 (c)
and ≈ 0.18 (d) on the boundary of singular wormhole solutions. Along the boundary
of degenerate wormholes the critical angle decreases monotonically, until it vanishes,
precisely when the Schwarzschild-NUT solution is reached.
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Figure 4. Properties at the throat (left plots: Gauss–Bonnet, right plots: Chern–Simons) for scaled NUT charge n = N/M = 1
and several values of the scaled scalar charge D/M: (a,b) energy density εth, (c,d) critical polar angle θth vs scaled coupling
constant α/M2. The dashed green curves represent the degenerate wormhole limit, and the dotted blue curves the
singular limit.

The horizon metric does not feature a finite critical polar angle for the Schwarzschild-
NUT and the scalarized nutty black holes. For these black holes θth = 0 only on the polar
axis, θ = 0 and θ = π/2. Consequently, θth = 0 along the black hole boundary. Along
the degenerate wormhole boundary θth then increases again. Thus all scalarized nutty
wormholes do possess a finite critical polar angle. The region of closed timelike curves
therefore extends to the throat of these nutty wormholes.

4. Conclusions

Following the reasoning of Brihaye et al. [46], who have studied spontaneously scalar-
ized Schwarzschild-NUT solutions, whose scalarization is caused by the presence of either
a GB term or a CS term in the scalar field equation, we have investigated scalarized nutty
wormhole solutions in these higher curvature theories. The presence of a NUT charge leads
to solutions with a Misner string on the polar axis. However, the dependence of the polar
angle factorizes and thus only a set of coupled ODEs for the metric functions and the scalar
field arises. Moreover the usual boundary conditions at spatial infinity are retained.

Solving numerically the ODEs we have obtained scalarized nutty wormhole solutions
for both higher curvature invariants. These wormhole solutions possess a minimum of the
circumferential radius, that arises naturally in these solutions, and that is identified with
the wormhole throat. When integrating the ODEs beyond the throat, a maximum may be
encountered, that would correspond to an equator. In any case, when integrating further
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into the second part of the manifold a singularity would be encountered at some value of
the radial coordinate. To avoid such a singularity, we have imposed reflection symmetry
on the wormhole solutions at the throat, and satisfied the resulting junction conditions in
terms of an action with a thin shell of ordinary matter at the throat.

The novel scalarized GB wormholes represent a NUT generalization of the previously
obtained scalarized wormholes [59–61,65]. In contrast, scalarized CS wormholes were not
studied before, since a finite CS term is necessary for their existence, while a spherically
symmetric metric leads to a vanishing CS invariant. Nevertheless the scalarized nutty
wormholes with both invariants show many features already known from the ordinary
scalarized GB wormholes. In particular, their domains of existence contain the same type of
boundaries. These boundaries consist of the respective black hole boundary, of a boundary,
where singular solutions are reached, and of a degenerate boundary, where two extrema,
the equator and the throat, merge. However, the NUT charge gives rise to regions of the
spacetime, where closed timelike curves exist, that extend to the throat.

Considering the limit of vanishing coupling constant, the Schwarzschild-NUT solu-
tions are obtained for both invariants. Then wormhole solutions do not exist any longer,
since they need the higher order curvature terms in the (generalized) Einstein equations to
obtain an effective stress energy tensor that violates the NEC conditions. Considering on
the other hand the limit of vanishing NUT charge, for both invariants a finite domain of
existence of scalarized solutions results. For the GB term this is no surprise, since their exis-
tence was shown before [59–61,65]. For the CS, however, this limit is special. Scalarization
needs higher and higher values of the coupling constant, as the NUT charge is lowered
towards zero. In the limit, the coupling constant diverges as the NUT charge goes to zero.
In that case, the CS term approaches a finite limiting value, which gives rise to a finite
limiting domain of existence. Note that the spacetime of these wormhole and black hole
solutions do not possess a Misner string anymore and consequently no closed timelike
curves exist.

The presence of a NUT charge can be viewed as toy model for learning about scalarized
rotating wormhole solutions. Their construction still represents a challenging task, not only
because complicated sets of coupled partial differential equations need to be solved, but
also because the proper conditions for the throat need to be formulated together with the
proper set of junction conditions. However, further directions of research look promising
like, in particular, the inclusion of further fields (see e.g., [70,71]), or the investigation
of EGB theories viable in cosmological settings also for non-vanishing scalar field (see
e.g., [72,73]).
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Appendix A

With Rc = re f1/2, the definition of the throat dRc/dr(r0) = 0, d2Rc/dr2(r0) < 0, where
r0 denotes the location of the throat, yields

1
2

e f1/2( f ′1 + 2
)

= 0 ,

1
2r0

e f1/2( f ′′1 − 2
)

> 0 ,

where all quantities are evaluated at r = r0 and the prime denotes the derivative with
respect to the dimensionless variable x = r/r0. f ′′1 can be expressed in terms of lower order
derivatives of the metric functions and the scalar field. This yields for the coupling to the
Gauss–Bonnet term

R′′C =128α2e3 f1/2φ2r0

[
−6N4e2 f0

(
3( f ′0)

2 − 2(φ′0)
2
)
− N2e f0 e f1 r2

0

(
6( f ′0)

2 − 7(φ′0)
2
)
+ e2 f1(φ′0)

2r4
0

]
+ 16αe5 f1/2φ′0r5

0

[
3e f0 f ′0φN2 − 6e f0 φ′0N2 + e f1 f ′0φr2

0 − 2e f1 φ′0r2
0

]
+ e9 f1/2r7

0

[
12e f0 N2 − e f1(φ′0)

2r2
0 + 4e f1 r2

0

]
×
{

2048α3 f ′0φ3φ′0

[
9e2 f0 N4 + 6e f0 e f1 r2

0N2 + e2 f1 r4
0

]
−512α2e f1 φ2r2

0

[
21e2 f0 N4 + 10e f0 e f1 r2

0N2 + e2 f1 r4
0

]
+ 8e5 f1 r10

0

}−1

> 0 ,

(A1)

where f ′0 and φ′ are related by the constraint

0 = 16α f ′0φφ′0

[
3e f0 N2 + e f1 r2

0

]
+ e f1 r2

0 −
[
4e f0 N2 + e f1(φ′0)

2r2
0 + 4e f1 r2

0

]
. (A2)

Similarly, for the coupling to the Chern–Simons term we find

R′′C =
(

1024α3e3 f0/2( f ′0)
4φ3φ′N3

−α2e f0 e3 f1/2N2
[
1280e f0 e− f1( f ′0)

2φ2r0N2 + 192( f ′0)
2φ2(φ′)2r3

0 − 256( f ′0)
2φ2r3
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+αe f0/2e3 f1 N
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2φφ′r6
0 − 32 f ′0(φ
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0 − 352e f0 e− f1 φφ′r4

0N2 + 8φ(φ′)3r6
0 − 160φφ′r6

0

]
−12e f0 e7 f1/2r7

0N2 + e9 f1/2(φ′)2r9
0 − 4e9 f1/2r9

0

)
×
{

8
[
192α2e f0( f ′0)

2φ2N2 − 24αe f0/2e3 f1/2φ(φ′)r3
0N − e3 f1 r6

0

]
e f1 r4

0

}−1

> 0 ,

(A3)

and the constraint

0 = αe f0/2( f ′0)
2φφ′N + 4e f0 e f1/2r0N2 + e3 f1/2(φ′)2r3

0 + 4e3 f1/2r3
0 . (A4)

We note from Figure 3f that φ ≥ 0 at the throat. As a consequence of the constraint we
find φ′ ≤ 0 at the throat.
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