# Pareto Optimal Decisions in Multi-Criteria Decision Making Explained with Construction Cost Cases

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Description of Selected Methods

#### 2.1.1. TOPSIS

- m—the number of available solutions,
- $n$—number of considered criteria,
- ${x}_{ij}$—value of the $i$-th variant according to $j$-th criterion,
- $X$—data matrix [${x}_{ij}]$,
- $Q$—vector of criteria weights $\left[{q}_{1},{q}_{2},\dots ,{q}_{n}\right]$.

- Positive Ideal Solution (PIS), marked as ${A}^{+}$, defined as:$${A}^{+}=\left\{{v}_{1}^{+},{v}_{2}^{+},\dots ,,{v}_{n}^{+}\right\}$$$${v}_{j}^{+}=\{\begin{array}{c}ma{x}_{i}{v}_{ij},j\in I\\ mi{n}_{i}{v}_{ij},j\in J\end{array}$$
- Negative Ideal Solution (NIS), marked as ${A}^{-}$, defined as:$${A}^{-}=\left\{{v}_{1}^{-},{v}_{2}^{-},\dots ,,{v}_{n}^{-}\right\}$$$${v}_{j}^{-}=\{\begin{array}{c}ma{x}_{i}{v}_{ij},j\in J\\ mi{n}_{i}{v}_{ij},j\in I\end{array}$$

#### 2.1.2. AHP

- Step I—hierarchy of the problem
- Step II—definition of preferences by the decision-maker
- Step III—preference matrix consistency testing
- Step IV—creating a summary ranking

_{ij}illustrate the preferences of the decision-maker. The digits 1 are on the diagonal of the matrix A, there is also the reciprocal of the adopted preferences, i.e.,

- ${\lambda}_{max}$—the maximum eigenvalue of the matrix,

- $P$—final score for a given solution variant,
- ${w}_{i}$—criterion weight according to the Formula (12),
- ${k}_{i}$—evaluation of a given criterion.

#### 2.1.3. FUCOM

#### 2.1.4. MARCOS

_{i}.

_{i}).

#### 2.2. Description of Selected Problems to Solve

#### 2.2.1. Choosing the Masonry Wall Material

#### 2.2.2. Choosing the Facade System

^{2}, execution time, aesthetics in visual reception, ease of access to the material, and durability.

## 3. Results

#### 3.1. The Sequences of Solutions for Masonry Wall Materials

#### 3.2. The Sequences of Solutions for Facade System

#### 3.3. Results Summarized

## 4. Discussion

^{2}may significantly influence the financial result of the decision-maker employer.

- It protects the decision-maker from choosing the variant which has a lower value, but its cost is higher
- Every next variant, if considered, brings an increase of the value
- Economic analysis (based on the cost of the analysed variant) can be made on each intermediate stage (not only on the final one)
- As a result of these economic analyses, the decision-maker can stop the procedure at every analysed variant, i.e., he can choose the variant providing fair technical properties paying a fair price for it. The choice of technically the best solution is not compulsory.

- The producers usually price their products based on the properties of the products, but also based on the competitors’ prices, the state of the market, etc. Accepting the price into MCDM analysis means the influence of the market issues on the prepared assessment. Considering the price after MCDM analysis (i.e., applying proposed CCAF), makes the choices more explainable. Features of the product are transformed into the ranking based on the decision maker’s preferences (through the MCDM method), and then, the decision-maker’s price sensitivity is matched to the market price of the products (stages 3 to 6).
- In the traditional MCDM, the variant assessed as the 2nd (or with lower rank) is presented as a worse one (also because of its price). In economic decisions (as the decision based on cost is) the ratio: value (received) to cost (spent on it), is very important. The proposed method is based on this concept
- All advantages of MCDM methods are kept, as MCDM is a part of the 6-stage method (jointly named as MCDM-CCAF).
- Price changes (caused by market processes or achieved in negotiations) can be easily adjusted in the scatterplot (without the necessity of repeating MCDM analysis, as other than price criteria e.g., sound insulation or number of block per m
^{2}are stable).

- Higher analytical effort (if compared to a solely applied, pure MCDM method).
- Only one cost criterion can be considered (if there are more, they should be combined into one).

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Saaty, T.L. Multicriteria Decision Making: The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Decision making with the Analytic Hierarchy Process. Int. J. Serv. Sci.
**2008**, 1, 83–98. [Google Scholar] [CrossRef] [Green Version] - Mahmoudi, A.; Mi, X.; Liao, H.; Feylizadeh, R.M.; Turskis, Z. Grey Best-Worst Method for Multiple Experts Multiple Criteria Decision Making under Uncertainty. Informatica
**2020**, 31, 331–357. [Google Scholar] [CrossRef] [Green Version] - Pamučar, D.S.; Tarle, S.P.; Parezanovic, T. New hybrid multi-criteria decision-making DEMATEL-MAIRCA model: Sustainable selection of a location for the development of multimodal logistics centre. Econ. Res. Ekon. Istraživanja
**2018**, 31, 1641–1665. [Google Scholar] [CrossRef] - Stanujkic, D.; Zavadskas, K.E. A Modified Weighted Sum Method Based on the Decision-maker’s Preferred Levels of Performances. Stud. Inform. Control.
**2015**, 24, 461–470. [Google Scholar] [CrossRef] [Green Version] - Pamučar, D.; Stević, Ž.; Sremac, S. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry
**2018**, 10, 393. [Google Scholar] [CrossRef] [Green Version] - Ali, Y.; Mehmood, B.; Huzaifa, M.; Yasir, U.; Khan, A.U. Development of a new hybrid multi criteria decision-making method for a car selection scenario. Facta Univers. Ser. Mech. Eng.
**2020**, 18, 357–373. [Google Scholar] [CrossRef] - Brauers, W.K.M.; Zavadskas, E.K.; Peldschus, F.; Turskis, Z. Multi-objective decision-making for road design. Transport
**2008**, 23, 183–193. [Google Scholar] [CrossRef] - Turskis, Z.; Antuchevičienė, J.; Keršulienė, V.; Gaidukas, G. Hybrid Group MCDM Model to Select the Most Effective Alternative of the Second Runway of the Airport. Symmetry
**2019**, 11, 792. [Google Scholar] [CrossRef] [Green Version] - Zavadskas, E.K.; Liias, R.; Turskis, Z. Multi-Attribute Decision-Making Methods for Assessment of Quality in Bridges and Road Construction: State-of-the -Art Surveys. Balt. J. Road Bridge Eng.
**2008**, 3, 152–160. [Google Scholar] [CrossRef] - Leśniak, A.; Górka, M. Evaluation of Selected Lightweight Curtain Wall Solutions Using Multi Criteria Analysis. In Proceedings of the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2017), Thessaloniki, Greece, 25–30 September 2017; Volume 1978. [Google Scholar]
- Ilbahar, E.; Karaşan, A.; Cebi, S.; Kahraman, C. A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Safety Sci.
**2018**, 103, 124–136. [Google Scholar] - Kobryń, A. Multicriteria Decision Making in Geodetic Network Design. J. Surv. Eng.
**2019**, 146, 1–10. [Google Scholar] [CrossRef] - Nguyen, H.-T.; Dawal, S.Z.M.; Nukman, Y.; Rifai, A.P.; Aoyama, H. An Integrated MCDM Model for Conveyor Equipment Evaluation and Selection in an FMC Based on a Fuzzy AHP and Fuzzy ARAS in the Presence of Vagueness. PLoS ONE
**2016**, 11, e0153222. [Google Scholar] [CrossRef] [PubMed] - Šaparauskas, J.; Turskis, Z. Evaluation of construction sustainability by multiple criteria methods. Technol. Econ. Dev. Econ.
**2006**, 12, 321–326. [Google Scholar] [CrossRef] - Leśniak, A.; Kubek, D.; Plebankiewicz, E.; Zima, K.; Belniak, S. Fuzzy AHP Application for Supporting Contractors’ Bidding Decision. Symmetry
**2018**, 10, 642. [Google Scholar] [CrossRef] [Green Version] - Leśniak, A.; Radziejowska, A. Supporting bidding decision using multi-criteria analysis methods. Procedia Eng.
**2017**, 208, 76–81. [Google Scholar] [CrossRef] - Arsovski, S.; Todorovic, G.; Lazić, Z.; Arsovski, Z.; Ljepava, N.; Aleksic, A. Model for Selection of the Best Location Based on Fuzzy AHP and Hurwitz Methods. Math. Probl. Eng.
**2017**, 2017, 2803461. [Google Scholar] [CrossRef] [Green Version] - Rosłon, J.; Seroka, M. Multicriteria selection of water insulation technology for foundation walls in an existing building. Arch. Civil. Eng.
**2016**, 62, 167–176. [Google Scholar] [CrossRef] - Książek, M.; Nowak, P.; Rosłon, J.; Wieczorek, T. Multicriteria Assessment of Selected Solutions for the Building Structural Walls. Procedia Eng.
**2014**, 91, 406–411. [Google Scholar] [CrossRef] [Green Version] - Kishore, R.; Dehmourdi, S.A.M.; Naik, M.G.; Hassanpour, M. Designing a framework for Subcontractor’s selection in construction projects using MCDM model. ORESTA
**2020**, 3, 48–64. [Google Scholar] [CrossRef] - Blagojević, A.; Vesković, S.; Kasalica, S.; Gojić, A.; Allamani, A. The application of the fuzzy AHP and DEA for measuring the efficiency of freight transport railway undertakings. ORESTA
**2020**, 3, 1–23. [Google Scholar] [CrossRef] - Selmi, M.; Kormi, T.; Ali, N.B.H. Comparison of multi-criteria decision methods through a ranking stability index. Int. J. Oper. Res.
**2016**, 27, 165–183. [Google Scholar] [CrossRef] - Wang, T.-C.; Tsai, S.-Y. Solar Panel Supplier Selection for the Photovoltaic System Design by Using Fuzzy Multi-Criteria Decision Making (MCDM) Approaches. Energies
**2018**, 11, 1989. [Google Scholar] [CrossRef] [Green Version] - Ustinovichius, L.; Książek, M.V.; Nowak, P.O.; Kivrak, S.; Rosłon, J.H. Computer-aided decision making in construction project development. J. Civil Eng. Manag.
**2015**, 21, 248–259. [Google Scholar] - Grzegorzewski, M. Wpływ Kryterium Ceny na Decyzje Podejmowane w Budownictwie z Wykorzystaniem Metod Wielokryterialnych. Master’s Thesis, Warsaw University of Technology, Warsaw, Poland, 2019. [Google Scholar]
- Książek, M.; Nowak, P.; Rosłon, J. Decision Making with the Use of AHP Method in Construction. Technical Transactions. Civ. Eng.
**2014**, 2-B, 31–39. [Google Scholar] [CrossRef] - Yannis, G.; Kopsacheili, A.; Dragomanovits, A.; Petraki, V. State-of-the-art review on multi-criteria decision-making in the transport sector. J. Traffic Transp. Eng.
**2020**, 7, 413–431. [Google Scholar] [CrossRef] - Milosavljević, M.; Kasalica, S.; Matić, M. The selection of optimal transport vehicle using multi criteria decision making methods. In Proceedings of the 2nd International Conference on Management, Engineering and Environment (ICMNEE 2018), Belgrade, Serbia, 11–12 October 2018. [Google Scholar]
- Seker, S.; Zavadskas, E.K. Application of Fuzzy DEMATEL Method for Analyzing Occupational Risks on Construction Sites. Sustainability
**2017**, 9, 2083. [Google Scholar] [CrossRef] [Green Version] - Jalal, M.P.; Shoar, S. A hybrid SD-DEMATEL approach to develop a delay model for construction projects. Eng. Constr. Arch. Manag.
**2017**, 24, 629–651. [Google Scholar] [CrossRef] - Yazdani, M.; Chatterjee, P.; Pamucar, D.; Doval, M. A risk-based integrated decision-making model for green supplier selection: A case study of a construction company in Spain. Kybernetes
**2019**, 49, 1229–1252. [Google Scholar] [CrossRef] - Stević, Ž.; Pamučar, D.; Vasiljević, M.; Stojić, G.; Korica, S. Novel Integrated Multi-Criteria Model for Supplier Selection: Case Study Construction Company. Symmetry
**2017**, 9, 279. [Google Scholar] [CrossRef] [Green Version] - Stević, Ž.; Tanackov, I.; Vasiljević, M.; Vesković, S. Evaluation in logistics using combined AHP and EDAS method. In Proceedings of the International Symposium on Operational Research SYM-OP-IS 2016, Tara, Serbia, 20–23 September 2016. [Google Scholar]
- Stević, Ž.; Vasiljević, M.; Zavadskas, E.K.; Sremac, S.; Turskis, Z. Selection of Carpenter Manufacturer using Fuzzy EDAS Method. Eng. Econ.
**2018**, 29, 281–290. [Google Scholar] [CrossRef] [Green Version] - Rzepecki, Ł. Ocena wielokryterialna systemów logistycznych zaopatrzenia w budownictwie. Logistyka
**2016**, 6, 1527–1531. [Google Scholar] - Nowak, P.; Skłodkowski, M. Multicriteria Analysis of Selected Building Thermal Insulation Solutions. Arch. Civil. Eng.
**2016**, 62, 137–148. [Google Scholar] [CrossRef] [Green Version] - Nenadić, D. Ranking dangerous sections of the road using MCDM model. DMAME
**2019**, 2, 115–131. [Google Scholar] [CrossRef] - Badi, I.; Abdulshahed, A. Ranking the Libyan airlines by using Full Consistency Method (FUCOM) and Analytical Hierarchy Process (AHP). ORESTA
**2019**, 2, 1–14. [Google Scholar] [CrossRef] [Green Version] - Stević, Ž.; Pamučar, D.; Puška, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput. Ind. Eng.
**2020**, 140, 106231. [Google Scholar] [CrossRef] - Yazdani, M.; Zavadskas, E.K.; Ignatius, J.; Abad, M.D. Sensitivity Analysis in MADM Methods: Application of Material Selection. Eng. Econ.
**2016**, 27, 382–391. [Google Scholar] [CrossRef] [Green Version] - Maghsoodi, A.I.; Khalilzadeh, M. Identification and evaluation of construction projects’ critical success factors employing Fuzzy-TOPSIS approach. KSCE J. Civ. Eng.
**2018**, 22, 1593–1605. [Google Scholar] [CrossRef] - Kaftanowicz, M.; Krzemiński, M. Multiple-criteria analysis of plasterboard systems. Procedia Eng.
**2015**, 111, 364–370. [Google Scholar] [CrossRef] [Green Version] - Gül, M.; Celik, E.; Gumus, A.; Guneri, A. A fuzzy logic based PROMETHEE method for material selection problems. Beni-Suef Univ. J. Basic Appl. Sci.
**2018**, 7, 68–79. [Google Scholar] [CrossRef] - Gicala, M.; Sobotka, A. Multi-criteria analysis of the construction technologies in the aspect of sustainable development. In Proceedings of the 2nd Baltic Conference for Students and Young Researchers (BalCon 2018), Gdynia, Poland, 20–23 April 2018; Volume 219, p. 04001. [Google Scholar]
- Anysz, H.; Ibadov, N.; Kaczorek, K.M.; Krzemiński, M. Wspomaganie procesu decyzyjnego wyboru zakupu maszyny do robót ziemnych z zastosowaniem analizy wielokryterialnej. TTS
**2015**, 12, 57–61. [Google Scholar] - Nowak, P.; Książek, M.; Draps, M.; Zawistowski, J. Decision Making with use of Building Information Modeling. Procedia Eng.
**2016**, 153, 519–526. [Google Scholar] [CrossRef] [Green Version] - Grzyl, B.; Apollo, M.; Heyducki, I. Criteria for evaluation and selection of the best offer for the Contract Engineer service. IOP Conf. Ser. Mater. Sci. Eng.
**2019**. [Google Scholar] [CrossRef] - Gicala, M.; Sagan, J.; Sobotka, A. Decision Support in the Process of Choosing a Residential Building Technology. In Proceedings of the 64 Scientific Conference of the Committee for Civil Engineering of the Polish Academy of Sciences and the Science Committee of the Polish Association of Civil Engineers (PZITB), Krynica Zdrój, Poland, 16–20 September 2018; Volume 262, p. 07003. [Google Scholar]
- Belošević, I.; Kosijer, M.; Ivić, M.; Pavlović, N. Group decision making process for early stage evaluations of infrastructure projects using extended VIKOR method under fuzzy environment. Eur. Transp. Res. Rev.
**2018**, 10, 43. [Google Scholar] [CrossRef] - Zadeh, L.A. Fuzzy Sets. Inf. Control
**1965**, 8, 338–353. [Google Scholar] [CrossRef] [Green Version] - Ibadov, N. Selection of Construction Project Taking into Account Technological and Organizational Risk. Acta Phys. Pol. A
**2017**, 132, 974–977. [Google Scholar] [CrossRef] - Ibadov, N.; Kulejewski, J. Wybór dostawcy w realizacji przedsięwzięcia budowlanego przy nieprecyzyjnie określonych kryteriach oceny. Logistyka
**2014**, 3, 2384–2388. [Google Scholar] - Yazdani, M.; Zarate, P.; Coulibaly, A.; Zavadskas, E.K. A group decision making support system in logistics and supply chain management. Expert Syst. Appl.
**2017**, 88, 376–392. [Google Scholar] [CrossRef] [Green Version] - Krzemiński, M. Comparison of Selected Multi-criteria Assessment Methods. AIP Conf. Proc.
**2016**, 1738, 200004. [Google Scholar] - Krzemiński, M. The selection of construction sub-contractors using the fuzzy sets theory. In Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014), Rhodes, Greece, 22–28 September 2014; Volume 1648, p. 600005. [Google Scholar]
- Zamani-Sabzi, H.; King, J.P.; Gard, C.C.; Abudu, S. Statistical and analytical comparison of multi-criteria decision-making techniques under fuzzy environment. Oper. Res. Perspect.
**2016**, 3, 92–117. [Google Scholar] [CrossRef] [Green Version] - Yao, H.; Shen, L.; Hao, J.; Yam, C.M. A fuzzy-analysis-based method for measuring contractors’ environmental performance. Manag Environ. Q.
**2007**, 18, 442–458. [Google Scholar] [CrossRef] - Gaspars-Wieloch, H. A Decision Rule for Uncertain Multi-Criteria Pure Decision Making and Independent Criteria. Optimum. Stud. Ekon.
**2017**, 3, 77–92. [Google Scholar] [CrossRef] [Green Version] - Anysz, H.; Brzozowski, L.; Kretowicz, W.; Narloch, P. Feature importance of stabilised rammed earth components affecting the compressive strength calculated with explainable artificial intelligence tools. Materials
**2020**, 13, 2317. [Google Scholar] [CrossRef] [PubMed] - Piątkiewicz, W.; Narloch, P.; Pietruszka, B. Influence of Hemp-Lime Composite Composition on its Mechanical and Physical Properties. Arch. Civil Eng.
**2020**, 66, 485–503. [Google Scholar] [CrossRef] - Yeşilkaya, M. Selection of Paper Factory Location Using Multi-Criteria Decision Making Methods. Çukurova Univ. J. Fac. Eng. Arch.
**2018**, 33, 31–44. [Google Scholar] - Zavadskas, K.E.; Turskis, Z.; Tamosaitiene, J.; Marina, V. Multicriteria selection of project managers by applying grey criteria. Balt. J. Sustain.
**2008**, 14, 462–477. [Google Scholar] - Kafel, K.; Leśniak, A.; Zima, K. Multicriteria comparative analysis of pillars strengthening of the historic building. Open Eng.
**2019**, 9. [Google Scholar] [CrossRef] [Green Version] - Bucoń, R.; Tomczak, M. Supporting building administrator’s decisions in determining maintenance costs of residential buildings. Eng. Struct. Technol.
**2016**, 8, 15–22. [Google Scholar] [CrossRef] - Bucoń, R.; Tomczak, M. Decision-making model supporting the process of planning expenditures for residential building renovation. Technol. Econ. Dev. Econ.
**2018**, 24, 1200–1214. [Google Scholar] [CrossRef] [Green Version] - Siksnelyte, I.; Zavadskas, E.K.; Streimikiene, D.; Sharma, D. An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues. Energies
**2018**, 11, 2754. [Google Scholar] [CrossRef] [Green Version] - Đalić, I.; Ateljević, J.; Stević, Ž.; Terzić, S. An integrated swot–fuzzy piprecia model for analysis of competitiveness in order to improve logistics performances. Facta Univ. Ser. Mech. Eng.
**2020**, 18, 439–451. [Google Scholar] - Krzemiński, M. Multiple-Criteria Cost Analysis for Simulated Life Cycle of Office Building. In Proceedings of the XV International Conference on Durability of Building Materials and Components, Barcelona, Spain, 20–23 October 2020. [Google Scholar]
- Korentz, J.; Nowogońska, B. Assessment of the life cycle of masonry walls in residential buildings. MATEC Web Conf.
**2018**, 174, 01025. [Google Scholar] [CrossRef] - Noureddine, M.; Ristic, M. Route planning for hazardous materials transportation: Multicriteria decision making approach. DMAME
**2019**, 2, 66–85. [Google Scholar] [CrossRef] - Davoudabadi, R.; Mousavi, S.M.; Šaparauskas, J.; Gitinavard, H. Solving construction project selection problem by a new uncertain weighting and ranking based on compromise solution with linear assignment approach. J. Civ. Eng. Manag.
**2019**, 25, 241–251. [Google Scholar] [CrossRef] [Green Version] - Eirgash, M.; Toğan, V.; Dede, T. A multi-objective decision-making model based on TLBO for the time–cost trade-off problems. Struct. Eng. Mech.
**2019**, 71, 139–151. [Google Scholar] - Žižović, M.M.; Albijanić, M.; Jovanović, V.; Žižović, M. A New Method of Multi-Criteria Analysis for Evaluation and Decision Making by Dominant Criterion. Informatica
**2019**, 30, 819–832. [Google Scholar] [CrossRef] - Stević, Ž.; Petrović, G.; Stanujkic, D. Novel Rough Delphi Method for Determination Weights of Criteria. In Proceedings of the 2nd International Conference on Management, Engineering and Environment (ICMNEE 2018), Belgrade, Serbia, 11–12 October 2018. [Google Scholar]
- Peldschus, F. Recent findings from numerical analysis in multi-criteria decision making. Technol. Econ. Dev. Econ.
**2018**, 24, 1695–1717. [Google Scholar] [CrossRef] - Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.; Turskis, Z.; Antucheviciene, J. An Extended Step-Wise Weight Assessment Ratio Analysis with Symmetric Interval Type-2 Fuzzy Sets for Determining the Subjective Weights of Criteria in Multi-Criteria Decision-Making Problems. Symmetry
**2018**, 10, 91. [Google Scholar] [CrossRef] [Green Version] - Mukhametzyanov, I.; Pamucar, D. A Sensitivity analysis in MCDM problems: A statistical approach. DMAME
**2018**, 2, 1–20. [Google Scholar] [CrossRef] - Nicał, A.K.; Wodyński, W.A. Procuring governmental megaprojects: Case study. Procedia Eng.
**2015**, 123, 342–351. [Google Scholar] [CrossRef] [Green Version] - Trzaskalik, T. Analiza Wielokryterialna, Wybrane Zagadnienia; Seria Informatyka w Badaniach Operacyjnych: Katowice, Poland, 2013. (In Polish) [Google Scholar]
- Trzaskalik, T. Metody Wielokryterialne na Polskim Rynku Finansowym; PWE: Warsaw, Poland, 2006. (In Polish) [Google Scholar]
- Tułecki, A.; Król, S. Modele Decyzyjne z Wykorzystaniem Metody Analytic Hierarchy Process (AHP) w Obszarze Transportu; Wydawnictwo Naukowe Instytutu Technologii Eksploatacji—Państwowego Instytutu Badawczego, Poland. Oper. Probl.
**2007**, 2, 171–179. [Google Scholar] - Available online: https://meskimikser.pl (accessed on 1 November 2020).
- Available online: https://www.muratorplus.pl (accessed on 1 November 2020).
- Available online: https://www.leroymerlin.pl (accessed on 1 November 2020).
- Available online: https://budownictwob2b.pl (accessed on 1 November 2020).
- System StoTherm Mineral. Available online: https://www.sto.pl/s/produkty-systemy/a0K2p00001IYHDwEAP/stotherm-mineral (accessed on 6 December 2020).
- Feldhaus Clinker Facade. Available online: https://www.feldhaus.pl (accessed on 6 December 2020).
- Kamieniarz. Producer and Contractor of Natural Stone Facades. Kamieniarz. Tadeusz Modliński. Available online: http://modlinski.com/o-firmie/ (accessed on 6 December 2020).
- Designer’s handbook of FibreC system. Available online: http://fibro-beton.pl/wp-content/uploads/2017/02/Podrecznik-projektowania-fibreC.pdf (accessed on 6 December 2020).

**Figure 3.**(

**a**) solid bricks, (

**b**) cellular concrete blocks, (

**c**) ceramic blocks, (

**d**) silicate blocks [own photos].

**Figure 4.**(

**a**) ETICS system, (

**b**) clinker cladding, (

**c**) natural stone, (

**d**) cement panels finishing [own photos].

**Figure 5.**Criteria weights obtained in the AHP method in the variant of calculations taking into account the cost criterion.

**Figure 6.**Criteria weights obtained in the AHP method in the variant of calculations without consideration of the cost criterion.

**Figure 8.**Criteria weights obtained in the AHP method in the variant of calculations taking into account the cost criterion.

**Figure 9.**Criteria weights obtained in the AHP method in the variant of calculations without considering the cost criterion.

**Figure 10.**Results from the FUCOM-MARCOS method presented as a discrete function of prices (wall structural materials case).

**Figure 11.**Results from FUCOM-MARCOS method with price criterion considered (wall structural materials case).

**Figure 13.**Results from the FUCOM-MARCOS method presented as a discrete function of prices (facade cladding case).

MCDM Method | Reference |
---|---|

AHP | [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] |

ANP | [12] |

ARAS | [10,15,30] |

COPRAS | [30] |

DELPHI | [12] |

DEMATEL | [5,12,31,32,33,34] |

EDAS | [30,33,34,35,36] |

ELECTRE | [12,24,26,37] |

ENTROPHY | [20,38] |

FUCOM | [7,39,40] |

MARCOS | [41] |

MOORA | [9,10,30,42,43] |

PROMETHEE | [14,18,24,30,44,45] |

SAW | [18,22,44,46,47,48,49] |

SWARA | [42] |

TOPSIS | [14,16,24,26,27,30,43,44,46,47,50] |

VIKOR | [51] |

WASPAS | [39,42] |

Comparative, Pairwise Assessment of A against B | Value |
---|---|

Just as good or important | 1 |

A little better or more important | 3 |

Definitely better or more important | 5 |

Much better or more important | 7 |

Extremely better or more important | 9 |

Matrix Dimension n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

$RI$ | 0 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.45 | 1.49 |

Criteria | Solid Bricks | Cellular Concrete Blocks | Ceramic Blocks | Silicate Blocks |
---|---|---|---|---|

Material cost | 90.21 PLN/m^{2} | 71 PLN/m^{2} | 56 PLN/m^{2} | 64 PLN/m^{2} |

Blocks consumption | 93 items/m^{2} | 8.33 items/m^{2} | 10.7 items/m^{2} | 15 items/m^{2} |

Acoustic insulation | 47 dB | 38 dB | 42 dB | 47 dB |

Thermal insulation | 3.03 W/m^{2} K | 0.68 W/m^{2} K | 1.31 W/m^{2} K | 3.22 W/m^{2} K |

Ease of processing | 2 out of 6 | 5 out of 6 | 4 out of 6 | 3 out of 6 |

**Table 5.**Final grades awarded in terms of the criteria taken into consideration by the decision-maker.

Criteria | ETICS | Clinker Cladding | Natural Stone Panel | Fiber-Cement Panel |
---|---|---|---|---|

Cost in PLN/m^{2} (rank) | 200 (4) | 417 (3) | 656 (2) | 1435 (1) |

Execution time | 4 out of 4 | 2 out of 4 | 2 out of 4 | 3 out of 4 |

Visual reception | 1 out of 4 | 3 out of 4 | 4 out of 4 | 2 out of 4 |

Ease of access | 4 out of 4 | 3 out of 4 | 1 out of 4 | 3 out of 4 |

Durability | 1 out of 4 | 3 out of 4 | 4 out of 4 | 3 out of 4 |

Criteria | Solid Bricks | Cellular Concrete Clocks | Ceramic Blocks | Silicate Blocks |
---|---|---|---|---|

Material cost | 1 | 2 | 4 | 3 |

Blocks consumption | 1 | 4 | 3 | 2 |

Acoustic insulation | 4 | 2 | 3 | 4 |

Thermal insulation | 1 | 4 | 2 | 1 |

Ease of processing | 1 | 4 | 3 | 2 |

MCDM Method | Cost Criterion Considered | Solid Bricks | Cellular Concrete Clocks | Ceramic Blocks | Silicate Blocks | |
---|---|---|---|---|---|---|

AHP | Yes | Result | 0.087 | 0.290 | 0.414 | 0.210 |

Rank | 4 | 2 | 1 | 3 | ||

No | Result | 0.113 | 0.462 | 0.278 | 0.148 | |

Rank | 4 | 1 | 2 | 3 | ||

TOPSIS | Yes | Result | 0.058 | 0.501 | 0.787 | 0.544 |

Rank | 4 | 3 | 1 | 2 | ||

No | Result | 0.010 | 0.921 | 0.544 | 0.260 | |

Rank | 4 | 1 | 2 | 3 |

Ai | Si | With the Cost Criterion Considered | |||||

AAI | 0.266 | Ki− | Ki+ | F(K−) | F(K+) | F(Ki) | Rank |

A1 | 0.297 | 1.117 | 0.297 | 0.210 | 0.790 | 0.281 | 4 |

A2 | 0.723 | 2.723 | 0.723 | 0.210 | 0.790 | 0.685 | 2 |

A3 | 0.836 | 3.147 | 0.836 | 0.210 | 0.790 | 0.791 | 1 |

A4 | 0.617 | 2.322 | 0.617 | 0.210 | 0.790 | 0.584 | 3 |

AI | 1.000 | ||||||

Without Consideration of the Cost Criterion | |||||||

AAI | 0.273 | Ki− | Ki+ | F(K−) | F(K+) | F(Ki) | Rank |

A1 | 0.319 | 1.167 | 0.318 | 0.214 | 0.786 | 0.301 | 4 |

A2 | 0.956 | 3.500 | 0.955 | 0.214 | 0.786 | 0.902 | 1 |

A3 | 0.675 | 2.473 | 0.674 | 0.214 | 0.786 | 0.637 | 2 |

A4 | 0.470 | 1.723 | 0.470 | 0.214 | 0.786 | 0.444 | 3 |

AI | 1.000 |

MCDM Method | Cost Criterion Considered | ETICS | Clinker Cladding | Natural Stone Panel | Fiber-Cement Panel | |
---|---|---|---|---|---|---|

AHP | Yes | Result | 3.125 | 2.750 | 2.538 | 2.008 |

Rank | 1 | 2 | 3 | 4 | ||

No | Result | 2.634 | 2.529 | 2.837 | 2.716 | |

Rank | 3 | 4 | 1 | 2 | ||

TOPSIS | Yes | Result | 0.671 | 0.574 | 0.442 | 0.243 |

Rank | 1 | 2 | 3 | 4 | ||

No | Result | 0.448 | 0.446 | 0.552 | 0.481 | |

Rank | 3 | 4 | 1 | 2 |

Ai | Si | With the Cost Criterion Considered | |||||

AAI | 0.270 | Ki− | Ki+ | F(K−) | F(K+) | F(Ki) | Rank |

A1 | 0.782 | 2.896 | 0.783 | 0.213 | 0.787 | 0.740 | 1 |

A2 | 0.576 | 2.133 | 0.577 | 0.213 | 0.787 | 0.545 | 2 |

A3 | 0.553 | 2.048 | 0.554 | 0.213 | 0.787 | 0.524 | 3 |

A4 | 0.462 | 1.709 | 0.462 | 0.213 | 0.787 | 0.437 | 4 |

AI | 0.999 | ||||||

Ai | Si | Without Consideration of the Cost Criterion | |||||

AAI | 0.367 | Ki− | Ki+ | F(K−) | F(K+) | F(Ki) | Rank |

A1 | 0.656 | 1.786 | 0.656 | 0.269 | 0.731 | 0.597 | 3 |

A2 | 0.633 | 1.723 | 0.633 | 0.269 | 0.731 | 0.576 | 4 |

A3 | 0.712 | 1.937 | 0.712 | 0.269 | 0.731 | 0.648 | 1 |

A4 | 0.679 | 1.848 | 0.679 | 0.269 | 0.731 | 0.618 | 2 |

AI | 1.000 |

MCDM Method | Cost Criterion Considered | Solid Bricks | Cellular Concrete Clocks | Ceramic Blocks | Silicate Blocks | |
---|---|---|---|---|---|---|

AHP | Yes | Result | 0.087 | 0.290 | 0.414 | 0.210 |

Rank | 4 | 2 | 1 | 3 | ||

No | Result | 0.113 | 0.462 | 0.278 | 0.148 | |

Rank | 4 | 1 | 2 | 3 | ||

TOPSIS | Yes | Result | 0.058 | 0.501 | 0.787 | 0.544 |

Rank | 4 | 3 | 1 | 2 | ||

No | Result | 0.010 | 0.921 | 0.544 | 0.260 | |

Rank | 4 | 1 | 2 | 3 | ||

FUCOM-MARCOS | Yes | Result | 0.281 | 0.685 | 0.791 | 0.584 |

Rank | 4 | 2 | 1 | 3 | ||

No | Result | 0.301 | 0.902 | 0.637 | 0.444 | |

Rank | 4 | 1 | 2 | 3 | ||

Cost of variants PLN/m^{2} | 90,21 | 71.00 | 56.00 | 64.00 |

MCDM Method | Cost Criterion Considered | ETICS | Clinker Cladding | Natural Stone Panel | Fiber-Cement Panel | |
---|---|---|---|---|---|---|

AHP | Yes | Result | 3.125 | 2.750 | 2.538 | 2.008 |

Rank | 1 | 2 | 3 | 4 | ||

No | Result | 2.634 | 2.529 | 2.837 | 2.716 | |

Rank | 3 | 4 | 1 | 2 | ||

TOPSIS | Yes | Result | 0.671 | 0.574 | 0.442 | 0.243 |

Rank | 1 | 2 | 3 | 4 | ||

No | Result | 0.448 | 0.446 | 0.552 | 0.481 | |

Rank | 3 | 4 | 1 | 2 | ||

FUCOM-MARCOS | Yes | Result | 0.740 | 0.545 | 0.524 | 0.437 |

Rank | 1 | 2 | 3 | 4 | ||

No | Result | 0.597 | 0.576 | 0.648 | 0.618 | |

Rank | 3 | 4 | 1 | 2 | ||

Cost of variants PLN/m^{2} | 200 | 417 | 656 | 1435 |

Label of Variant | A | B | C | D | E | F |
---|---|---|---|---|---|---|

Cost of variant | 100 | 120 | 125 | 140 | 150 | 155 |

Values from MCDM method (cost excluded) | 0.36 | 0.52 | 0.27 | 0.88 | 0.92 | 0.69 |

Ranking (based on values) | 5 | 4 | 6 | 2 | 1 | 3 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Anysz, H.; Nicał, A.; Stević, Ž.; Grzegorzewski, M.; Sikora, K.
Pareto Optimal Decisions in Multi-Criteria Decision Making Explained with Construction Cost Cases. *Symmetry* **2021**, *13*, 46.
https://doi.org/10.3390/sym13010046

**AMA Style**

Anysz H, Nicał A, Stević Ž, Grzegorzewski M, Sikora K.
Pareto Optimal Decisions in Multi-Criteria Decision Making Explained with Construction Cost Cases. *Symmetry*. 2021; 13(1):46.
https://doi.org/10.3390/sym13010046

**Chicago/Turabian Style**

Anysz, Hubert, Aleksander Nicał, Željko Stević, Michał Grzegorzewski, and Karol Sikora.
2021. "Pareto Optimal Decisions in Multi-Criteria Decision Making Explained with Construction Cost Cases" *Symmetry* 13, no. 1: 46.
https://doi.org/10.3390/sym13010046