Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus
Abstract
:1. Introduction
- (1)
- Simpson’s quadrature formula (Simpson’s rule)
- (2)
- Simpson’s second formula or Newton–Cotes quadrature formula (Simpson’s rule).
2. Preliminaries of q–Calculus and Some Inequalities
3. New q–Derivatives for the Functions of Two Variables
4. New Identity
5. Some New –Newton’s Type Inequalities
6. Applications
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 1–18. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 13, 1–8. [Google Scholar]
- Özdemir, M.E.; Akdemir, A.O.; Kavurmaci, H.; Avci, M. On the Simpson’s inequality for co-ordinated convex functions. arXiv 2010, arXiv:1101.0075v2. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Some Newton’s type inequalities for harmonic convex functions. J. Adv. Math. Stud. 2016, 9, 7–16. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton inequalities for p-harmonic convex functions. Honam Math. J. 2018, 40, 239–250. [Google Scholar]
- Iftikhar, S.; Komam, P.; Erden, S. Newton’s type integral inequalities via local fractional integrals. Fractals 2020, 28, 1–12. [Google Scholar] [CrossRef]
- Ernst, T. The History of q-calculus and a New Method; Department of Mathematics, Uppsala University: Stockholm, Sweden, 2000. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Gauchman, H. Integral inequalities in q-calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Universitext, New York, NY, USA, 2002. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 282, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.; Abdeljawad, T.; Mohammed, P.O.; Rangel-Oliveros, Y. Simpson’s Integral Inequalities for Twice Differentiable Convex Functions. Math. Probl. Eng. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q–Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King-Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Alp, N.; Sarikaya, M.Z. Hermite–Hadamard’s type inequalities for co-ordinated convex functions on quantum integral. Appl. Math. -Notes 2020, 20, 341–356. [Google Scholar]
- Bermudo, S.; Kórus, P.; Valdés, J.N. On q-Hermite–Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 160, 1–11. [Google Scholar] [CrossRef]
- Kunt, M.; Latif, M.A.; İşcan, İ.; Dragomir, S.S. Quantum Hermite–Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals. Sigma J. Eng. Nat. Sci. 2019, 37, 207–223. [Google Scholar]
- Kalsoom, H.; Wu, J.D.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some q-analogues of Hermite–Hadamard inequality of functions of two variables on finite rectangles in the plane. J. King-Saud Univ. Sci. 2017, 29, 263–273. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. New Quantum Estimates of Trapezium-Type Inequalities for Generalized ϕ-Convex Functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. Quantum Estimates of Ostrowski Inequalities for Generalized ϕ-Convex Functions. Symmetry 2019, 11, 1513. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. Some New q-Integral Inequalities Using Generalized Quantum Montgomery Identity via Preinvex Functions. Symmetry 2020, 12, 553. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.; Kashuri, A.; Liko, R.; Hernández Hernández, J.E. Quantum Trapezium-Type Inequalities Using Generalized f-Convex Functions. Axioms 2020, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Cortez, M.V.; García, C.; Hernández Hernández, J.E. Ostrowski-type inequalities for functions whose derivative modulus is relatively convex. Appl. Math. Inf. Sci. 2019, 13, 121–127. [Google Scholar] [CrossRef]
- Viloria, J.M.; Vivas-Cortez, M. Jensen’s inequality for convex functions on n-coordinates. Appl. Math. Inf. Sci. 2018, 12, 931–935. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; García, C. Ostrowski type inequalities for functions whose derivatives are (m,h1,h2)-convex. Appl. Math. Inf. Sci. 2017, 11, 79–86. [Google Scholar] [CrossRef]
- Cortez, M.V. Féjer type inequalities for (s, m)-Convex functions in second sense. Appl. Math. Inf. Sci. 2016, 10, 1689–1696. [Google Scholar] [CrossRef]
- Zhuang, H.; Liu, W.; Park, J. Some quantum estimates of Hermite-Hadmard inequalities for quasi-convex functions. Mathematics 2019, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 121, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new q-Hermite–Hadamard like inequalities for co-ordinated convex functions. J. Optim. Theory Appl. 2020, 185, 1–16. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Sarikaya, M.Z. On Some New Trapezoidal Type Inequalities for the Functions of Two Variables via Quantum Calculus. Available online: https://www.researchgate.net/publication/342411316. (accessed on 20 July 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Aamir Ali, M.; Kashuri, A.; Bashir Sial, I.; Zhang, Z. Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus. Symmetry 2020, 12, 1476. https://doi.org/10.3390/sym12091476
Vivas-Cortez M, Aamir Ali M, Kashuri A, Bashir Sial I, Zhang Z. Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus. Symmetry. 2020; 12(9):1476. https://doi.org/10.3390/sym12091476
Chicago/Turabian StyleVivas-Cortez, Miguel, Muhammad Aamir Ali, Artion Kashuri, Ifra Bashir Sial, and Zhiyue Zhang. 2020. "Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus" Symmetry 12, no. 9: 1476. https://doi.org/10.3390/sym12091476
APA StyleVivas-Cortez, M., Aamir Ali, M., Kashuri, A., Bashir Sial, I., & Zhang, Z. (2020). Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus. Symmetry, 12(9), 1476. https://doi.org/10.3390/sym12091476