# Neutrino Cooling of Primordial Hot Regions

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Reactions Inside Heated Area

## 3. Temperature Evolution

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Kashlinsky, A.; Ali-Haïmoud, Y.; Clesse, S.; Garcia-Bellido, J.; Amendola, L.; Wyrzykowski, L.; Annis, J.; Arbey, A.; Arendt, R.; Atrio-Barandela, F.; et al. Electromagnetic probes of primordial black holes as dark matter. Bull. Am. Astron. Soc.
**2019**, 51, 51. [Google Scholar] - Dubrovich, V.K.; Glazyrin, S.I. Cosmological dinosaurs. arXiv, 2012; arXiv:1208.3999. [Google Scholar]
- Kumar, S.; Dimastrogiovanni, E.; Starkman, G.D.; Copi, C.; Lynn, B. CMB spectral distortions from cooling macroscopic dark matter. Phys. Rev. D
**2019**, 99. [Google Scholar] [CrossRef] [Green Version] - Kogut, A.; Abitbol, M.; Chluba, J.; Delabrouille, J.; Fixsen, D.; Hill, J.; Patil, S.; Rotti, A. CMB Spectral Distortions: Status and Prospects. arXiv, 2019; arXiv:1907.13195. [Google Scholar]
- Belotsky, K.M.; Dokuchaev, V.I.; Eroshenko, Y.N.; Esipova, E.A.; Khlopov, M.Y.; Khromykh, L.A.; Kirillov, A.A.; Nikulin, V.V.; Rubin, S.G.; Svadkovsky, I.V. Clusters of Primordial Black Holes. Eur. Phys. J. C
**2019**, 79. [Google Scholar] [CrossRef] [Green Version] - Gani, V.A.; Kirillov, A.A.; Rubin, S.G. Classical transitions with the topological number changing in the early Universe. J. Cosmol. Astropart. Phys.
**2018**, 4, 042. [Google Scholar] [CrossRef] [Green Version] - Dokuchaev, V.; Eroshenko, Y.; Rubin, S. Early formation of galaxies initiated by clusters of primordial black holes. Astron. Rep.
**2008**, 52, 779–789. [Google Scholar] [CrossRef] - Rubin, S.G.; Sakharov, A.S.; Khlopov, M.Y. The Formation of primary galactic nuclei during phase transitions in the early universe. J. Exp. Theor. Phys.
**2001**, 92, 921–929. [Google Scholar] [CrossRef] [Green Version] - Lifshitz, E.; Pitaevskii, L. Physical Kinetics. Course of Theoretical Physics; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Dolgov, A.; Postnov, K. Electromagnetic radiation accompanying gravitational waves from black hole binaries. J. Cosmol. Astropart. Phys.
**2017**, 2017, 018. [Google Scholar] [CrossRef] [Green Version] - Belotsky, K.; Golikova, Y.; Rubin, S. Local heating of matter in the early universe owing to the interaction of the Higgs field with a scalar field. Phys. Atom. Nucl.
**2017**, 80, 718–720. [Google Scholar] [CrossRef] - Berezin, V.; Kuzmin, V.; Tkachev, I. Thin-wall vacuum domain evolution. Phys. Lett. B
**1983**, 120, 91–96. [Google Scholar] [CrossRef] - Khlopov, M.; Konoplich, R.; Rubin, S.; Sakharov, A. Formation of black holes in first order phase transitions. arXiv
**1998**, arXiv:hep-ph/9807343. [Google Scholar] - Rubin, S.G.; Khlopov, M.Y.; Sakharov, A.S. Primordial Black Holes from Non-Equilibrium Second Order Phase Transition. Gravit. Cosmol.
**2000**, 6, 51–58. [Google Scholar] - Deng, H.; Vilenkin, A.; Yamada, M. CMB spectral distortions from black holes formed by vacuum bubbles. J. Cosmol. Astropart. Phys.
**2018**, 2018, 059. [Google Scholar] [CrossRef] [Green Version] - Dolgov, A.; Silk, J. Baryon isocurvature fluctuations at small scales and baryonic dark matter. Phys. Rev. D
**1993**, 47, 4244–4255. [Google Scholar] [CrossRef] - Dolgov, A.D. Massive and supermassive black holes in the contemporary and early Universe and problems in cosmology and astrophysics. Phys.-Uspekhi
**2018**, 61, 115–132. [Google Scholar] [CrossRef] [Green Version] - Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on Primordial Black Holes. arXiv
**2020**, arXiv:2002.12778. [Google Scholar] - Hasinger, G. Illuminating the dark ages: Cosmic backgrounds from accretion onto primordial black hole dark matter. arXiv
**2020**, arXiv:2003.05150. [Google Scholar] [CrossRef] - Hawkins, M.R.S. The signature of primordial black holes in the dark matter halos of galaxies. Astron. Astrophys.
**2020**, 633, A107. [Google Scholar] [CrossRef] [Green Version] - García-Bellido, J. Primordial Black Holes. PoS
**2018**, 2018, 042. [Google Scholar] [CrossRef] - Clesse, S.; García-Bellido, J. Seven Hints for Primordial Black Hole Dark Matter. Phys. Dark Univ.
**2018**, 22, 137–146. [Google Scholar] [CrossRef] [Green Version] - Dokuchaev, V.; Eroshenko, Y.; Rubin, S. Quasars formation around clusters of primordial black holes. Grav. Cosmol.
**2005**, 11, 99–104. [Google Scholar] - Belotsky, K.; Berkov, A.; Kirillov, A.; Rubin, S. Clusters of black holes as point-like gamma-ray sources. Astropart. Phys.
**2011**, 35, 28–32. [Google Scholar] [CrossRef] [Green Version] - Toshchenko, K.; Belotsky, K. Studying method of microlensing effect estimation for a cluster of primordial black holes. J. Phys. Conf. Ser.
**2019**, 1390, 012087. [Google Scholar] [CrossRef]

**Figure 1.**(

**Left**) The time behaviour of the temperature inside the heated area. (

**Right**) Cooling time ${t}_{\mathrm{cooling}}$ of media inside the heated area depending on the initial temperature ${T}_{0}$.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Belotsky, K.; El Kasmi, M.; Rubin, S.
Neutrino Cooling of Primordial Hot Regions. *Symmetry* **2020**, *12*, 1442.
https://doi.org/10.3390/sym12091442

**AMA Style**

Belotsky K, El Kasmi M, Rubin S.
Neutrino Cooling of Primordial Hot Regions. *Symmetry*. 2020; 12(9):1442.
https://doi.org/10.3390/sym12091442

**Chicago/Turabian Style**

Belotsky, Konstantin, Mohamed El Kasmi, and Sergey Rubin.
2020. "Neutrino Cooling of Primordial Hot Regions" *Symmetry* 12, no. 9: 1442.
https://doi.org/10.3390/sym12091442