Lie Symmetry Analysis, Exact Solutions, Conservation Laws and Bäcklund Transformations of the Gibbons-Tsarev Equation
Abstract
:1. Introduction
2. Lie Point Symmetries and Related Invariant Solutions
3. Nonlinear Self-Adjointness and Conservation Laws
4. Bäcklund Transformations
5. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Krasilshchik, I.S.; Vinogradov, A.M. Nonlocal symmetries and the theory of coverings: An addendum to A. M. vinogradov’s “local symmetries and conservation laws”. Acta Appl. Math. 1984, 2, 79–96. [Google Scholar] [CrossRef]
- Wang, G.W.; Liu, X.Q.; Zhang, Y.Y. Symmetry reduction, exact solutions and conservation laws of a new fifth-order nonlinear integrable equation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2313–2320. [Google Scholar] [CrossRef]
- Zhao, Z.; Han, B. Lie symmetry analysis of the Heisenberg equation. Commun. Nonlinear Sci. Numer. Simul. 2017, 45, 220–234. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Bai, N.; Guan, H.Y. Some symmetries, similarity solutions and various conservation laws of a type of dispersive water waves. Adv. Differ. Equ. 2019, 2019, 435. [Google Scholar] [CrossRef]
- Zhang, Y.; Mei, J.; Zhang, X. Symmetry properties and explicit solutions of some nonlinear differential and fractional equations. Appl. Math. Comput. 2018, 337, 408–418. [Google Scholar]
- Ibragimov, N.H.; Avdonina, D.D.E. Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws. Russ. Math. Surv. 2013, 68, 889. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, Y.; Mei, J. Some exact solutions and infinite conservation laws of an extended KdV integrable system. Mod. Phys. Lett. B 2020. [Google Scholar] [CrossRef]
- Gibbons, J.; Tsarev, S.P. Reductions of the Benney equations. Phys. Lett. A 1996, 211, 19–24. [Google Scholar] [CrossRef]
- Kaptsov, O.V.; Schmidt, A.V. Linear determining equations for differential constraints. Glasg. Math. J. 2005, 47, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Baran, H.; Blaschke, P.; Krasil’Shchik, I.S.; Marvan, M. On symmetries of the Gibbons—Tsarev equation. J. Geom. Phys. 2019, 144, 54–80. [Google Scholar] [CrossRef]
- Ibragimov, N.H. Nonlinear self-adjointness in constructing conservation laws. arXiv 2011, arXiv:1109.1728. [Google Scholar]
- Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef] [Green Version]
- Naz, R. Conservation laws for some compacton equations using the multiplier approach. Appl. Math. Lett. 2012, 25, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Naz, R.; Mahomed, F.M.; Mason, D.P. Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics. Appl. Math. Comput. 2008, 205, 212–230. [Google Scholar]
- Kara, A.H.; Khalique, C.M. Conservation laws and associated symmetries for some classes of soil water motion equations. Int. J. Nonlinear Mech. 2001, 36, 1041–1045. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Ibragimov, N.H.; Lukashchuk, S.Y. Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations. Commun. Nonlinear Ence Numer. Simul. 2015, 23, 153–163. [Google Scholar] [CrossRef]
- Singla, K.; Gupta, R.K. Conservation laws for certain time fractional nonlinear systems of partial differential equations. Commun. Nonlinear Ence Numer. Simul. 2017, 53, 10–21. [Google Scholar] [CrossRef]
- Lukashchuk, S.Y. Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn. 2014, 80, 791–802. [Google Scholar] [CrossRef] [Green Version]
- Hongqing, Z.; Yufeng, Z. Bäcklund transformation, nonlinear superposition principle and infinite conservation laws of Benjamin equation. Appl. Math. Mech. 2001, 22, 1017–1021. [Google Scholar]
- Guizhang, T. Bäcklund transformation and conservation laws of the Boussinesq equation. Acta Math. Appl. Sin. 1981, 4, 63–68. [Google Scholar]
- Ibragimov, N.H. Conservation laws and non-invariant solutions of anisotropic wave equations with a sourse. Nonlinear Anal. Real World Appl. 2018, 40, 82–94. [Google Scholar] [CrossRef]
0 | |||||
0 | 0 | 0 | |||
0 | 0 | ||||
0 | 0 | 0 | 0 | ||
0 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Zhang, Y. Lie Symmetry Analysis, Exact Solutions, Conservation Laws and Bäcklund Transformations of the Gibbons-Tsarev Equation. Symmetry 2020, 12, 1378. https://doi.org/10.3390/sym12081378
Lu H, Zhang Y. Lie Symmetry Analysis, Exact Solutions, Conservation Laws and Bäcklund Transformations of the Gibbons-Tsarev Equation. Symmetry. 2020; 12(8):1378. https://doi.org/10.3390/sym12081378
Chicago/Turabian StyleLu, Huanhuan, and Yufeng Zhang. 2020. "Lie Symmetry Analysis, Exact Solutions, Conservation Laws and Bäcklund Transformations of the Gibbons-Tsarev Equation" Symmetry 12, no. 8: 1378. https://doi.org/10.3390/sym12081378
APA StyleLu, H., & Zhang, Y. (2020). Lie Symmetry Analysis, Exact Solutions, Conservation Laws and Bäcklund Transformations of the Gibbons-Tsarev Equation. Symmetry, 12(8), 1378. https://doi.org/10.3390/sym12081378