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Abstract: In this paper, we mainly put the Lie symmetry analysis method on the Gibbons-Tsarev equation
(GTe) to obtain some new results, including some Lie symmetries, one-parameter transformation
groups, explicit invariant solutions in the form of power series. Subsequently, the self-adjointness of
the GTe is singled out. It follows that the conservation laws associated with symmetries of GTe are
constructed with the aid of Ibragimov’ method. Finally, we present the Bäcklund transformations so
that more abundant solutions can be worked out.
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1. Introduction

During the last decades, searching for the symmetries of the nonlinear differential equations
has attracted increasing attention from researchers for their wide applications in investigating the
integrability of the original equation. In early reference documentations, various powerful approaches
were put forward, one after another, to obtain the symmetries of equations [1–5]. Among them,
the Lie symmetry analysis method proposed by Olver is regarded as the most classic and verified to be
extremely effective for studying Lie symmetry and related group transformations, conservation laws
and invariant solutions [1]. With the aid of the classical Lie symmetry analysis method, a large
number of differential equations have been discussed, such as the new fifth-order nonlinear integrable
equation [6], the Heisenberg equation [7] and some others [8–11]. However, it is worth noting that the
method has not been applied to the Gibbons-Tsurev equation

utt = uxutx − utuxx + 1, (1)

which was introduced in Reference [12] to classify finite reductions of the infinite Benney system.
In Reference [13], the differential constraints compatible with the Gibbons-Tsarev equation are
constructed by generalizing the classical determining equations. Besides that, H.Baran, et al.
constructed an infinite series of conservation laws and the algebra of nonlocal symmetries in the
covering associated with these conservation laws of GTe by means of the known lax pair [14]. It is well
known that exact solutions of nonlinear partial differential equations have played an essential role in the
study of many complex physical phenomena and other nonlinear engineering problems. Those leading
to constructing exact solutions to nonlinear evolution equations are significant. The investigation
of these exact solutions involves a variety of powerful methods, among which the Lie symmetry
analysis method is a very effective one. Thus, it is very necessary to investigate the solutions of the
Gibbons-Tsurev equation by employing the Lie symmetry analysis method.
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In this article, we aim to calculate the Lie point symmetry and invariant solutions of the
Gibbons-Tsarev equation in Section 2. The symmetry generator can be directly derived with the
aid of Maple software. It follows that the corresponding one-parameter transformation groups also
can be obtained. That means the relation between old solutions and new solutions can also be clearly
presented. Subsequently, via the characteristic equation we discuss the group-invariant solutions of
Equation (1). The series of solutions can be further generated by taking a particular objective function.
In Section 3, we are committed to proving that Equation (1) is nonlinearly self-adjoint according to
the related theorem introduced in Reference [15]. Based on that, the new conservation laws can also
be constructed by utilizing the new conservation theorem proposed by Ibragimov in Reference [16].
Not only that, there are many other approaches to constructing conservation laws that have been put
forward by scholars in succession, including the multiplier method, Noether’ method, direct method
and some others [17–19]. The Noether’ method is not applicable to all differential equations due to the
fact that the Noether theorem requires existence of a lagrangian and lagrangian exists only for some
special types of differential equations. Compared with Noether’s approach, the Ibragimov’s method
shows greater superiority in constructing conservation laws because the existence of lagrangian is
not required by the new theorem. Moreover, the new conservation theorem is based on the concept
of an adjoint equation for the original equation and the precondition that the differential equation
is nonlinearly self-adjoint must be guaranteed before constructing conservation laws. The Bäcklund
transformations of the the Gibbons-Tsarev equation in the reduced form are investigated in terms of
the Tu scheme in Section 4. Finally, some conclusions and a summary are given in the last section.

2. Lie Point Symmetries and Related Invariant Solutions

In this section, we consider employing the classical Lie symmetry analysis method to study the
Lie point symmetries and group-invariant solutions associated with symmetries of the Gibbons-Tsarev
equation. We first assume a vector field has the following infinitesimal generator

V = ξ(x, t, u)
∂

∂x
+ η(x, t, u)

∂

∂t
+ τ(x, t, u)

∂

∂u
,

and its second prolongation pr(2)V can be expressed as

pr(2)V = V + φt ∂

∂ut
+ φx ∂

∂ux
+ φxx ∂

∂uxx
+ φtt ∂

∂utt
+ φtx ∂

∂utx
,

where
φx = Dx(τ − ξux − ηut) + ξuxx + ηuxt,

φt = Dt(τ − ξux − ηut) + ξuxt + ηutt,

φtx = DtDx(τ − ξux − ηut) + ξuxxt + ηuttx,

φtt = D2
t (τ − ξux − ηut) + ξuxtt + ηuttt,

φxx = D2
x(τ − ξux − ηut) + ξuxxx + ηuxxt

(2)

and the total derivative operator Di is defined by

Di =
∂

∂xi + ui
∂

∂u
+ uij

∂

∂uj
+ · · ·, i = 1, 2, (x1, x2) = (t, x).

As a matter of fact, the Lie point symmetry is obtained if Equation (1) satisfies the following
invariance condition

pr(2)V(41)|41=0 = 0,

here41 = utt − uxutx + utuxx − 1. It follows that

φtt − φxutx − φtxux − φtuxx − φxxut = 0. (3)
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Substituting Equation (2) into Equation (3) and equating the coefficients of the polynomials to
zero yields a system of equations with respect to ξ, η, τ. Solving these algebraic equations, one has

ξ = −1
2

c3t +
3
2

c1x + c5, η = c1t + c2, τ = 2c1u + c3x + c4.

Thus, we obtain the following vector fields

V1 =
3
2

x
∂

∂x
+ t

∂

∂t
+ 2u

∂

∂u
, V2 =

∂

∂t
, V3 = −1

2
t

∂

∂x
+ x

∂

∂u
, V4 =

∂

∂u
, V5 =

∂

∂x
.

Meanwhile, it is not difficult to find that these vector fields Vi(i = 1, 2, · · ·, 5) form a Lie algebra
and the corresponding Lie bracket table is given in Table 1.

Table 1. The commutator table.

[Vi, Vj] V1 V2 V3 V4 V5

V1 0 −V2 − 1
2 V3 −2V4 − 3

2 V5

V2 V2 0 − 1
2 V5 0 0

V3
1
2 V3

1
2 V5 0 0 −V4

V4 2V4 0 0 0 0
V5

3
2 V5 0 V4 0 0

In order to investigate the invariant solutions for Equation (1), it is very important to search for
Lie group transformations which can be generated by solving the following initial problems

dx̃(ε)
dε

= ξ(x̃(ε), t̃(ε), ũ(ε)), x̃(0) = x,

dt̃(ε)
dε

= η(x̃(ε), t̃(ε), ũ(ε)), t̃(0) = t,

dũ(ε)
dε

= τ(x̃(ε), t̃(ε), ũ(ε)), ũ(0) = u,

where ε is a parameter. Therefore, the one-parameter Lie symmetry group generated by the
infinitesimal generator Vi(i = 1, 2, · · ·, 5) can be expressed as below, respectively.

g1(x, t, u) = eV1(x, t, u) = (e
3
2 εx, eεt, e2εu),

g2(x, t, u) = eV2(x, t, u) = (x, ε + t, u),

g3(x, t, u) = eV3(x, t, u) = (−1
2

tε + x, t, εx + u),

g4(x, t, u) = eV4(x, t, u) = (x, t, u + ε),

g5(x, t, u) = eV5(x, t, u) = (x + ε, t, u).

If we denote the action of the above symmetry group generated by Vi on a solution f (x, t) to
Equation (1) by gi(ε) f (x, t), we can get the corresponding new solutions:

g1(ε) f (x, t) = e−2ε f (e
3
2 εx, eεt),

g2(ε) f (x, t) = f (x, t− ε),

g3(ε) f (x, t) = f (−1
2

tε + x, t)− εx,

g4(ε) f (x, t) = f (x, t)− ε,

g5(ε) f (x, t) = f (x− ε, t).



Symmetry 2018, 12, 1378 4 of 13

In what follows, we seek invariant solutions of GTe with the aid of characteristic equations.
For the vector field V1, we have the following characteristic equation

dx
3
2 x

=
dt
t
=

du
2u

, (4)

which has the group-invariant solution

u = t2g(ξ), ξ = x
2
3 t−1. (5)

Substituting Equation (5) into Equation (1) gives rise to

2g(ξ)− 2ξg′(ξ) + ξ2g′′(ξ)− 2
9

ξ−1g′2(ξ) +
8
9

ξ−1g(ξ)g′′(ξ)− 4
9

ξ−2g(ξ)g′(ξ)− 1 = 0. (6)

In order to construct power series solution, we assume g(ξ) has the following form

g(ξ) =
∞

∑
n=0

cnξn. (7)

Substituting Equation (7) into Equation (6) and equating the coefficients of ξn(n ≥ 0) to zero,
one has

ξ0 : −4
9

c0c1 = 0,

ξ1 : −2
3

c2
1 +

8
9

c0c2 = 0,

ξ2 : 2c0 −
8
9

c1c2 + 4c0c3 − 1 = 0,

ξ3 : 2c1 +
20
9

c1c3 +
80
9

c0c4 = 0,

ξ4 : 3c1c4 + c2c3 + 7c0c5 = 0,

ξ5 : 9c3 + 58c1c5 + 36c2c4 + 27c2
3 + 108c0c6 = 0,

· ··,

and solving the above equations, we get

c0 6= 0, c1 = 0, c2 = 0, c3 =
1− 2c0

4c0
, c4 = 0, c5 = 0, c6 =

−c3 − 3c2
3

12c0
=
−4c2

0 + 8c0 − 3
192c3

0
, · · ·.

Thus, the explicit form of g(ξ) can be written as

g(ξ) = c0 +
1− 2c0

4c0
ξ3 +

−4c2
0 + 8c0 − 3
192c3

0
ξ6 + · · ·,

where c0 is an arbitrary constant. Hence, we acquire the following analytic power series solution

u(x, t) = t2

(
c0 +

1− 2c0

4c0
ξ3 +

−4c2
0 + 8c0 − 3
192c3

0
ξ6 + · · ·

)
.

In terms of Equation (4), we can also introduce the following group-invariant solution

u = x
4
3 f (ξ), ξ = x

2
3 t−1. (8)
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Substituting Equation (8) into Equation (1) yields

2ξ3 f ′(ξ) + ξ4 f ′′(ξ) +
20
9

ξ2 f (ξ) f ′(ξ) +
8
9

ξ3 f (ξ) f ′′(ξ)− 2
9

ξ3 f ′2(ξ)− 1 = 0. (9)

Similar to the above discussion, we still suppose f (ξ) is of the form f (ξ) =
∞
∑

n=0
cnξn.

Thus Equation (9) can be transformed into

2
∞

∑
n=0

(n + 1)cn+1ξn+3 +
∞

∑
n=0

(n + 1)(n + 2)cn+2ξn+4 +
20
9

c0c1ξ2 +
20
9

∞

∑
n=1

n

∑
k=0

(n + 1− k)ckcn+1−kξn+2 +
16
9

c0c2ξ3

+
8
9

∞

∑
n=1

n

∑
k=0

(n + 2− k)(n + 1− k)ckcn+2−kξn+3 − 2
9

c2
1ξ3 − 2

9

∞

∑
n=1

n

∑
k=1

k(n + 2− k)ckcn+2−kξn+3 − 1 = 0.

(10)

Obviously, Equation (10) has no solution because of the existence of the single term 1.
For V3, one has the characteristic equation

dx
− 1

2 t
=

du
x

=
dt
0

.

Similarly, we introduce the following group-invariant solution

u = f (ξ)− x2

t
, ξ = t. (11)

And inserting Equation (11) into Equation (1), we get

f ′′(ξ)− 2
f ′(ξ)

ξ
− 1 = 0,

that is equivalent to
ξ f ′′(ξ)− 2 f ′(ξ)− ξ = 0. (12)

Substituting ξ f ′′(ξ) = f ′(ξ) + ξ2
(

f ′(ξ)
ξ

)′
into Equation (12) gives

(
f ′(ξ)

ξ

)′
− 1

ξ

f ′(ξ)
ξ
− 1

ξ
= 0. (13)

Setting f ′(ξ)
ξ = y(ξ), then Equation (13) becomes

y′ − 1
ξ

y =
1
ξ

, (14)

whose solution reads

y = e
∫ 1

ξ dξ
(∫ 1

ξ
e−
∫ 1

ξ dξ dξ + c1

)
= c1ξ − 1. (15)

Inserting f ′(ξ)
ξ = y(ξ) into Equation (15) and integrating once with respect to ξ produces

f (ξ) =
c1

3
ξ3 − 1

2
ξ2 + c2, (16)

where c1, c2 are arbitrary integration constants.
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Hence, we have the following invariant solutions

u(x, t) =
c1

3
ξ3 − 1

2
ξ2 + c2 −

x2

t
. (17)

3. Nonlinear Self-Adjointness and Conservation Laws

Since Ibragimov proposed a direct and effective method for constructing conservation laws,
which overcomes the shortcomings of previous methods, more and more experts and scholars have
devoted themselves to utilizing this method to construct conservation laws associated with symmetries
of nonlinearly self-adjoint equations [16]. After that, the approach for constructing conserved vectors
of fractional differential equations also has been put forward and applied in References [20,21] by using
the explicit Formula (40) shown in Reference [22]. It is worth emphasizing that we must prove that a
given differential equation is nonlinearly self-adjoint before constructing corresponding conservation
laws. So in this section, we first focus on proving Equation (1) is nonlinearly self-adjoint. Before that,
let us give some fundamental definitions and notations associated with nonlinear self-adjointness and
conservation laws [15].

Let us consider a system of m differential equations

Fα(x, u, u(1), u(2), · · ·, u(s)) = 0, α = 1, 2, · · ·, m, (18)

with m dependent variables u = (u1, · · ·, um) and n independent variables x = (x1, · · ·, xn).

Definition 1. The adjoint equations to Equation (18) are given by

F∗α (x, u, v, u(1), v(1), · · ·, u(s), v(s)) = 0, α = 1, 2, · · ·, m, (19)

with
F∗α (x, u, v, u(1), v(1), · · ·, u(s), v(s)) =

δL
δuα

,

where L is the formal Lagrangian for Equation (18) defined by

L = vβFβ =
m

∑
β=1

vβFβ.

Here v(1), · · ·, v(s) are the sets of the partial derivatives of new dependent variables v = (v1, · · ·, vm),
the Euler-lagrange operator is

δ

δuα
=

∂

∂uα
+

∞

∑
s=1

(−1)sDi1 · · ·Dis
∂

∂uα
i1···is

, α = 1, ..., m

and the total differentiations Di with two dependent variables u, v are defined by

Di =
∂

∂xi + uα
i

∂

∂uα
+ vα

i
∂

∂vα
+ uα

ij
∂

∂uα
j
+ vα

ij
∂

∂vα
j
+ · · ·.

Definition 2. The system Equation (18) is nonlinearly self-adjoint if there exist functions
vα = ϕα(x, u)(α = 1, 2, · · ·, m) that solve the adjoint system Equation (19) for all solutions u(x) of
Equation (18) and satisfy the condition ϕα(x, u) 6= 0.

In addition, we have the following equivalent definition
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Definition 3. The system Equation (18) is nonlinearly self-adjoint if there exist a substitution v = ϕ(x, u) 6= 0
such that the equation

F∗α (x, u, ϕ, u(1), ϕ(1), · · ·, u(s), ϕ(s)) = λαFα(x, u, u(1), · · ·, u(s))

is satisfied identically in the variables, x, u, u(1), · · ·, u(s), where λα = λα(x, u, u(1), · · ·, u(s)) is an
undetermined variable coefficients.

Theorem 1. Let the system Equation (18) be nonlinearly self-adjoint. The any Lie point, contact or
Lie-Bäcklund symmetry

X = ξ i(x, u, ux, · · ·) ∂

∂xi + ηα(x, u, ux, · · ·) ∂

∂uα
,

leads to conservation laws
Di(Ci)|Fα=0 = 0,

where

Ci = Wα

[
∂L
∂uα

i
− Dj

(
∂L

∂uα
ij

)
+ DjDk

(
∂L

∂uα
ijk

)
− · · ·

]
+ Dj (Wα)

[
∂L

∂uα
ij
− Dk

(
∂L

∂uα
ijk

)
+ · · ·

]
+ DjDk (Wα)

[
∂L

∂uα
ijk
− · · ·

]
, (20)

Wα = ηα − ξ juα
j .

Based on the given definitions and notations, the formal lagrangian for Equation (1) can be
written as

L = v(utt − uxutx + utuxx − 1). (21)

And substituting Equation (21) into Equation (19) gives the following adjoint equation to
Equation (1):

F∗ = D2
t (v) + Dx(vuxt)− DxDt(uxv) + D2

x(utv)− Dt(vuxx)

= vtt − 2uxxvt − uxvxt + 2uxtvx + utvxx = 0.
(22)

According to Definition 3, the nonlinear self-adjointness condition for Equation (1) has the
following form

vtt − 2uxxvt − uxvxt + 2uxtvx + utvxx = λ(utt − uxutx + utuxx − 1), (23)

where λ = λ(x, t, u). Denoting v = ϕ(x, t, u), and substituting into Equation (23) yields

ϕtt + ϕtuut + ϕuutt + ϕuuu2
t + ϕtuut − ϕtuxx − ϕxtux − ϕtuu2

x + 2ϕxuxt + ϕuuxuxt + ϕxxut

+ ϕuxuxut − ϕtuxx − ϕuutuxx = λ(utt − uxutx + utuxx − 1).

Equating the coefficients for the different derivative terms of u(x, t) and their product terms to
zero yields

ϕt = 0, ϕx = 0, ϕu = 0,

which indicates ϕ = constant 6= 0. Thus, Equation (1) is nonlinearly self-adjoint. It follows that we can
obtain some conservation laws of Equation (1) according to Theorem 1 .

For the generator V1 = 3
2 x ∂

∂x + t ∂
∂t + 2u ∂

∂u , we have W = 2u − 3
2 xux − tut. Thus, formulas

Equation (20) yield the following conserved vector

C1 = W
[

∂L
∂ut
− Dx

(
∂L

∂uxt

)]
+ Dx(W)

[
∂L

∂uxt

]
+ Dt(W)

[
∂L
∂utt

]
− Dt

(
∂L
∂utt

)
= 4uvuxx + 2uuxvx − 2uvt − 3xvuxuxx −

3
2

xu2
xvx +

3
2

xutvt − 2tutvuxx − tuxutvx + tutvt −
1
2

u2
xv

+
3
2

xuxuxxv + tutxuxv + vut −
3
2

xuxtv− tvutt,
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C2 = W
[

∂L
∂ux
− Dx

(
∂L

∂uxx

)
− Dt

(
∂L

∂uxt

)]
+ Dt(W)

[
∂L

∂uxt

]
+ Dx(W)

[
∂L

∂uxx

]
= −2uvuxt − 2uutvx + 2uuxvt +

3
2

xuxvutx +
3
2

xutuxvx −
3
2

xu2
xvt + tvututx + tu2

t vx − tutuxvt − utuxv

+
3
2

xuxtuxv + tuttuxv +
1
2

uxutv−
3
2

xuxxutv− tuxtutv.

For the generator V2 = ∂
∂t , we have W = −ut. Thus formulas Equation (20) yield the following

conserved vector
C1 = −2utvuxx − utuxvx + utvt + uxtuxv− uttv,

C2 = u2
t vx − utuxvt + uttuxv.

For the generator V3 = − 1
2 t ∂

∂x + x ∂
∂u , we have W = x + 1

2 tux. Thus formulas Equation (20) yield
the following conserved vector

C1 = 2xvuxx + xuxvx − xvt +
t
2

vuxuxx +
1
2

tu2
xvx −

1
2

tuxvt − uxv +
1
2

vux +
1
2

tuxtv,

C2 = −xvutx − xutvx + xuxvt − tvuxuxt −
1
2

tuxutvx +
1
2

tu2
xvt −

1
2

u2
xv + utv +

1
2

tuxxutv.

For the generator V4 = ∂
∂u , we have W = 1. Thus formulas Equation (20) yield the following

conserved vector
C1 = 2vuxx + uxvx − vt,

C2 = −vutx − utvx + uxvt.

For the generator V5 = ∂
∂x , we have W = −ux. Thus formulas Equation (20) yield the following

conserved vector
C1 = −vuxxux − u2

xvx + uxvt − uxtv,

C2 = 2vuxtux + uxutvx − u2
xvt − uxxutv.

Remark 1. Obviously, it can be clearly seen that the derived conservation laws involve not only the solution
u(x, t) of the original equation, but also the solution v(x, t) of the adjoint equation. Hence, what is worth
emphasizing is that the above given conservation laws are for Equation (1) and the adjoint equation Equation (22).
In order to obtain the conservation laws of the original equation, we must solve v(x, t) from the adjoint equation.
To this end, we set ξ = t + βx in Equation (22). Thus obtaining

v′′(ξ)− 2uxxv′(ξ)− βuxv′′(ξ) + 2βuxtv′(ξ) + β2utv′′(ξ) = 0,

that is equivalent to
(1− βux + β2ut)v′′(ξ) + (2βuxt − 2uxx)v′(ξ) = 0. (24)

Letting v′ = y(ξ), then Equation (24) gives

dy
dξ

= − 2βuxt − 2uxx

1− βux + β2ut
y

whose solution reads

y = e
∫
− 2βuxt−2uxx

1−βux+β2ut
dξ

,

i.e.,

v =
∫

e
∫
− 2βuxt−2uxx

1−βux+β2ut
dξ

dξ. (25)

Substituting Equation (25) and ξ = t + βx into the derived conservation vectors, we can derive the
conservation laws for the original equation Equation (1).
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4. Bäcklund Transformations

The main purpose of this section is to find the Bäcklund transformations of the reduced form of
Equation (1). For the sake of brevity, we restrict our consideration to the Gibbons-Tsarev equation in
the following reduced form

wtt = wxwtx − wtwxx. (26)

To begin with, we let F(w) = wxwtx − wtwxx, u = w + w′, v = w− w′, where w and w′ are
solutions to Equation (26), that is

wtt = F(w), w′tt = F(w′). (27)

By adding and subtracting the above two equations, we can get

utt = F
(

u + v
2

)
+ F

(
u− v

2

)
, (28a)

vtt = F
(

u + v
2

)
− F

(
u− v

2

)
. (28b)

Direct calculation yields

utt =
uxutx + vxvtx − utuxx − vtvxx

2
, (29a)

vtt =
uxvtx + vxutx − utvxx − vtuxx

2
. (29b)

Based on the selection of the Bäcklund transformation in [23,24], here we suppose the Bäcklund
transformation of Equation (1) has the following form

ut = f (u, v, ux, vx), (30a)

vt = g(u, v, ux, vx). (30b)

Then we have
utt = fuut + fvvt + fux uxt + fvx uxt, (31a)

uxt = fuux + fvvt + fux uxx + fvx vxx, (31b)

vtt = gvvt + guut + gvx vxt + gux uxt, (31c)

vxt = gvvx + guux + gux uxx + gvx vxx. (31d)

Substituting Equations (30a), (30b), (31b) and (31d) into Equation (31a) yields

utt = fu f + fvg + fux fuux + fux fvvx + f 2
ux

uxx + fux fvx vxx + fvx gvvx + fvx guux + fvx gux uxx + fvx gvx vxx. (32)

Substituting Equations (30a), (30b), (31b) and (31d) into Equation (31c) yields

vtt = gvg + gu f + gvx gvvx + gvx guux + gvx gux uxx + g2
vx

vxx + gux fuux + gux fvvx + gux fux uxx + gux fvx vxx. (33)

Substituting Equations (30a), (30b), (31b) and (31d) into Equations (29a) and (29b) yields, respectively

utt =
fuu2

x + fvuxvx + fux uxuxx + fvx uxvxx + gvv2
x + guuxvx + gux uxxvx + gvx vxvxx − f uxx − gvxx

2
, (34)

vtt =
gvuxvx + u2

xgu + gux uxuxx + gvx uxvxx + fuvxux + fvv2
x + fux uxxvx + fvx vxvxx − f vxx − guxx

2
. (35)
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Setting the coefficients of the same terms on the right of the equations Equations (32) and (34) be
equal, one gets

uxx : f 2
ux + fvx gux =

1
2

fux ux +
1
2

gux vx −
1
2

f , (36a)

vxx : fux fvx + fvx gvx =
1
2

fvx ux +
1
2

gvx vx −
1
2

g, (36b)

u2
x : fu = 0, v2

x : gv = 0, (36c)

ux : fux fu + fvx gu =
1
2
( fv + gu)vx, vx : fux fv + fvx gv = 0, (36d)

f fu + fvg = 0. (36e)

For Equations (33) and (35), by carrying out similar procedures as above, one has

uxx : gvx gux + gux fux =
1
2

gux ux +
1
2

fux vx −
1
2

g, (37a)

vxx : g2
vx + fvx gux =

1
2

gvx ux +
1
2

fvx vx −
1
2

f , (37b)

u2
x : gu = 0, v2

x : fv = 0, (37c)

ux : gvx gu + gux fu =
1
2
(gv + fu)vx, vx : gvx gv + gux fv = 0, (37d)

ggv + gu f = 0. (37e)

Equations (36a) and (37b) gives

f 2ux − g2vx =
1
2
(gux − fvx )vx +

1
2
( fux − gvx )ux. (38)

Equations (36b) and (37a) yields

( fvx − gux )( fux + gvx ) =
1
2
( fvx − gux )ux +

1
2
(gvx − fux )vx. (39)

Inserting Equation (38) into Equation (39), one infers that

(gvx − fux )

[(
fux + gvx −

1
2

ux

)2
− 1

4
v2

x

]
= 0. (40)

Detailed calculation shows that the related constraint conditions can be satisfied only if gvx 6= fux .
Then we conclude that (

fux + gvx −
1
2

ux

)2
− 1

4
v2

x = 0, (41)

which presents

fux + gvx =
1
2

ux ±
1
2

vx. (42)

In what follows, we discuss the solution of Equation (30) in two situations if fux + gvx = 1
2 ux +

1
2 vx.

For fux + gvx = 1
2 ux − 1

2 vx, it can be directly concluded that there is no solution satisfying the
constraint conditions.

In particular, we let {
fux = 1

2 vx

gvx = 1
2 ux
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whose solution reads {
f = 1

2 uxvx + f1(vx)

g = 1
2 uxvx + g1(ux).

(43)

Inserting Equation (43) into Equations (38) and (39) gives g′1 = f ′1 = 0. That gives g1 = α, f1 = β

(α and β are arbitrary constants). It is easily verified that other constraint conditions are automatically
satisfied. Hence, one can obtain the Bäcklund transformation of Equation (1) as follows{

ut =
1
2 uxvx + α

vt =
1
2 uxvx + β.

(44)

Similarly, we set {
fux = 1

2 ux

gvx = 1
2 vx

which produces f = 1
4 u2

x +
1
4 v2

x, g = 1
4 u2

x +
1
4 v2

x. Thus, the second Bäcklund transformation can be
expressed as {

ut =
1
4 u2

x +
1
4 v2

x
vt =

1
4 u2

x +
1
4 v2

x.
(45)

According to the above derived Bäcklund transformations, we can compute the traveling wave
solutions for Equation (44). Firstly, we set w′ = 0 and α = β = 0, then u = v = w. Thus Equation (44)
becomes wt =

1
2 w2

x. Letting ξ = x + ct, we further get cw′ = 1
2 w′2, whose solutions read w = 2cξ + γ

(γ is arbitrary constant). Furthermore, it is easy to get a traveling wave solution of Equation (26).
In fact, setting w(x, t) = w(ξ), ξ = x + ct and substituting into Equation (26), we find w = λξ + µ

(λ and µ are arbitrary constants). Because of the arbitrariness of γ, λ and µ, we find that the solutions
of Bäcklund transformations are just that of the original equation Equation (26). Direct computation
shows that the solutions that Equation (45) produces are the same as those Equation (44) gives.

5. Conclusions and Discussion

In this article, we investigated the Gibbons-Tsarev equation, which arises in reductions of the
Benney equation. It turns out the Lie-group analysis method proposed by Olver is a powerful tool for
studying the symmetries, invariant solutions, conservation laws of differential equations. Based on
obtained symmetry generators, we derive several Lie-group transformations by solving differential
equations with the initial condition, and invariant solutions generated by characteristic equations.
By supposing that g(ξ) (or f (ξ)) appearing in the invariant solutions has different rational forms,
we may derive fruitful exact solutions. Particularly, we discuss the series solutions of Equation (1) by

supposing g(ξ) =
∞
∑

n=0
cnξn in this paper. The new conservation theorem put forward by Ibragimov

establishes a connection between symmetries and conservation laws. Hence, on the basis of obtained
symmetries, the conservation laws can also be directly constructed via Theorem 1. Meanwhile, we
can also obtain different conservation laws of the original equation by substituting different solutions
of the adjoint equation into conserved vectors. In addition, the non-invariant solutions which are
different from group-invariant solutions can also be produced from the obtained conservation laws [25].
Here we no longer discuss it. In the last section, we introduced the Bäcklund transformations which are
characterized by changing the old solutions into new solutions of the differential equation. Thus, more
abundant solutions can be obtained by inserting obtained solutions into the Bäcklund transformations.
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