Allocation of Radiation Shielding Boards to Protect the Urban Search and Rescue Robots from Malfunctioning in the Radioactive Environments Arising from Decommissioning of the Nuclear Facility
Abstract
:1. Introduction
- a finite budget to purchase shielding boards that cannot satisfy every UGV;
- different radioactive environments that damage the UGVs;
- different working times of the UGVs;
- only -rays that would be shielded;
- at most 8 shielding boards that each UGV could carry;
- only one installation sequence of the boards that exists in our work;
- a simple diffusion process that radioactivities of the wall and the ground are same;
- the urban area only contains concrete walls and concrete grounds.
- We propose a UGV structure and installation of the shielding board;
- we evaluate the radiation damage on the UGV with different number of the shielding board;
- we propose two methods to minimize the radiation damage for the UGV swarm;
- we discuss the performance of the two methods and compare the malfunction ratios that result from the two methods in different budget.
2. Radiation Protection
2.1. Damage Evaluation for the UGVs
2.2. Radiation Protection of UGVs
2.3. Absorption Doses in Different Working Environments
3. Allocation of the Shielding Boards
3.1. The Competitive Equilibrium Analysis
3.2. The Integer Linear Programming
4. Simulation and Analysis
4.1. Simulation of Radiation Damages and Shielding
4.2. Radiation Damages on the UGV without Shielding
4.3. Allocation of the Shielding Board
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Messina, E. Performance standards for urban search and rescue robots. In Proceedings of the Defense and Security Symposium, 2006, Orlando, FL, USA, 17–21 April 2006; Proc. SPIE: Bellingham, WA, USA, 2006; Volume 6230, p. 62301V. [Google Scholar] [CrossRef]
- Liu, Y.; Nejat, G. Robotic Urban Search and Rescue: A Survey from the Control Perspective. J. Intell. Robot. Syst. 2013, 72, 147–165. [Google Scholar] [CrossRef]
- Sugiyama, H.; Tsujioka, T.; Murata, M. Real-time exploration of a multi-robot rescue system in disaster areas. Adv. Robot. 2013, 27. [Google Scholar] [CrossRef]
- Malandrino, F.; Chiasserini, C.F.; Casetti, C.; Chiaraviglio, L.; Senacheribbe, A. Planning UAV Activities for Efficient User Coverage in Disaster Areas. Ad Hoc Networks 2018, 89. [Google Scholar] [CrossRef] [Green Version]
- Innocente, M.; Grasso, P. Self-organising swarms of firefighting drones: Harnessing the power of collective intelligence in decentralised multi-robot systems. J. Comput. Sci. 2019, 34, 80–101. [Google Scholar] [CrossRef]
- Mavroulis, S.; Emmanuel, A.; Spyrou, N.I.; Antoniou, V.; Skourtsos, E.; Papadimitriou, P.; Kassaras, I.; Kaviris, G.; Tselentis, A.; Voulgaris, N.; et al. UAV and GIS based rapid earthquake-induced building damage assessment and methodology for EMS-98 isoseismal map drawing: The June 12, 2017 Mw 6.3 Lesvos (Northeastern Aegean, Greece) earthquake. Int. J. Disaster Risk Reduct. 2019, 37, 101169. [Google Scholar] [CrossRef]
- Igarashi, H.; Kon, K.; Matsuno, F. Evaluation of sensors for mobile robots based on irradiation experiment. In Proceedings of the 2012 IEEE/SICE International Symposium on System Integration (SII), Fukuoka, Japan, 16–18 December 2012; pp. 517–522. [Google Scholar]
- Nagatani, K.; Kiribayashi, S.; Okada, Y.; Otake, K.; Yoshida, K.; Tadokoro, S.; Nishimura, T.; Yoshida, T.; Koyanagi, E.; Fukushima, M.; et al. Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. J. Field Robot. 2013, 30, 44–63. [Google Scholar] [CrossRef]
- Sanada, Y.; Orita, T.; Torii, T. Temporal variation of dose rate distribution around the Fukushima Daiichi nuclear power station using unmanned helicopter. Appl. Radiat. Isot. 2016, 118. [Google Scholar] [CrossRef] [PubMed]
- Takemori, T.; Miyake, M.; Hirai, T.; Wang, X.; Fukao, Y.; Adachi, M.; Yamaguchi, K.; Tanishige, S.; Nomura, Y.; Matsuno, F.; et al. Development of the multifunctional rescue robot FUHGA2 and evaluation at the world robot summit 2018. Adv. Robot. 2020, 34, 119–131. [Google Scholar] [CrossRef]
- Lee, C.; Kim, H.R. Optimizing UAV-based radiation sensor systems for aerial surveys. J. Environ. Radioact. 2019, 204, 76–85. [Google Scholar] [CrossRef]
- Kawabata, K. Toward technological contributions to remote operations in the decommissioning of the Fukushima Daiichi Nuclear Power Station. Jpn. J. Appl. Phys. 2020, 59, 050501. [Google Scholar] [CrossRef]
- Erdelj, M.; Król, M.; Natalizio, E. Wireless Sensor Networks and Multi-UAV Systems for Natural Disaster Management. Comput. Networks 2017, 124. [Google Scholar] [CrossRef]
- Erdelj, M.; Natalizio, E.; Chowdhury, K.; Akyildiz, I. Help from the Sky: Leveraging UAVs for Disaster Management. IEEE Pervasive Comput. 2017, 16, 24–32. [Google Scholar] [CrossRef]
- Kawabata, K.; Yamada, T.; Shirasaki, N.; Ishiyama, H. Designing Test Methods for Running Capabilities of Ground Robots for Nuclear Disaster Response *. In Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019; pp. 559–564. [Google Scholar] [CrossRef]
- Bresson, G.; Alsayed, Z.; Yu, L.; Glaser, S. Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving. IEEE Trans. Intell. Veh. 2017, 2, 194–220. [Google Scholar] [CrossRef] [Green Version]
- Vidal, A.R.; Rebecq, H.; Horstschaefer, T.; Scaramuzza, D. Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High-Speed Scenarios. IEEE Robot. Autom. Lett. 2018, 3, 994–1001. [Google Scholar] [CrossRef] [Green Version]
- Pierzchała, M.; Giguère, P.; Astrup, R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Comput. Electron. Agric. 2018, 145, 217–225. [Google Scholar] [CrossRef]
- Deschaud, J. IMLS-SLAM: Scan-to-Model Matching Based on 3D Data. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 2480–2485. [Google Scholar]
- Ye, X.; Ji, X.; Sun, B.; Chen, S.; Wang, Z.; Li, H. DRM-SLAM: Towards dense reconstruction of monocular SLAM with scene depth fusion. Neurocomputing 2020, 396, 76–91. [Google Scholar] [CrossRef]
- Ji, S.; Qin, Z.; Shan, J.; Lu, M. Panoramic SLAM from a multiple fisheye camera rig. ISPRS J. Photogramm. Remote. Sens. 2020, 159, 169–183. [Google Scholar] [CrossRef]
- Yamada, T.; Kawabata, K. Development of a Dataset to Evaluate SLAM for Fukushima Daiichi Nuclear Power Plant Decommissioning. In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration (SII), Honolulu, HI, USA, 12–15 January 2020; pp. 7–11. [Google Scholar]
- Goiffon, V.; Rolando, S.; Corbiere, F.; Rizzolo, S.; Chabane, A.; Girard, S.; Baer, J.; Estribeau, M.; Magnan, P.; Paillet, P.; et al. Radiation Hardening of Digital Color CMOS Camera-on-a-Chip Building Blocks for Multi-MGy Total Ionizing Dose Environments. IEEE Trans. Nucl. Sci. 2016, 64, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Kantaros, Y.; Zavlanos, M.M. Distributed Intermittent Connectivity Control of Mobile Robot Networks. IEEE Trans. Autom. Control 2017, 62, 3109–3121. [Google Scholar] [CrossRef]
- Crucitti, P.; Latora, V.; Marchiori, M.; Rapisarda, A. Error and attack tolerance of complex networks. Phys. A Stat. Mech. Its Appl. 2004, 340, 388–394. [Google Scholar] [CrossRef] [Green Version]
- Heidari Kapourchali, M.; Sepehry, M.; Aravinthan, V. Fault Detector and Switch Placement in Cyber-Enabled Power Distribution Network. IEEE Trans. Smart Grid 2018, 9, 980–992. [Google Scholar] [CrossRef]
- Duan, Y.; Li, W.; Fu, X.; Luo, Y.; Yang, L. A methodology for reliability of WSN based on software defined network in adaptive industrial environment. IEEE/CAA J. Autom. Sin. 2018, 5, 74–82. [Google Scholar] [CrossRef]
- Buldyrev, S.V.; Parshani, R.; Paul, G.; Stanley, H.E.; Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 2010, 464, 1025–1028. [Google Scholar] [CrossRef] [Green Version]
- Nagatani, K.; Kiribayashi, S.; Okada, Y.; Otake, K.; Yoshida, K.; Tadokoro, S.; Nishimura, T.; Yoshida, T.; Koyanagi, E.; Fukushima, M.; et al. Gamma-ray irradiation test of electric components of rescue mobile robot Quince. In Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1–5 November 2011; pp. 56–60. [Google Scholar]
- Pu, H.; Yu, B.; Luo, J.; Yang, Y.; Sun, Y.; Xie, S. Irradiation test of the control system of a tracked robot for nuclear disaster response. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 5843–5848. [Google Scholar]
- Goiffon, V.; Estribeau, M.; Cervantes, P.; Molina, R.; Gaillardin, M.; Magnan, P. Influence of Transfer Gate Design and Bias on the Radiation Hardness of Pinned Photodiode CMOS Image Sensors. IEEE Trans. Nucl. Sci. 2014, 61, 3290–3301. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xue, Y.; Chen, W.; He, B.; Yao, Z.; Ma, W.; Sheng, J. Fixed Pattern Noise and Temporal Noise Degradation Induced by Radiation Effects in Pinned Photodiode CMOS Image Sensors. IEEE Trans. Nucl. Sci. 2018, 65, 1264–1270. [Google Scholar] [CrossRef]
- Ciarpi, G.; Magazzù, G.; Palla, F.; Saponara, S. Design, Implementation, and Experimental Verification of 5 Gbps, 800 Mrad TID and SEU-Tolerant Optical Modulators Drivers. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 829–838. [Google Scholar] [CrossRef]
- Baniasadi, P.; Foumani, M.; Smith-Miles, K.; Ejov, V. A transformation technique for the clustered generalized traveling salesman problem with applications to logistics. Eur. J. Oper. Res. 2020, 285, 444–457. [Google Scholar] [CrossRef]
- Foumani, M.; Moeini, A.; Haythorpe, M.; Smith-Miles, K. A cross-entropy method for optimising robotic automated storage and retrieval systems. Int. J. Prod. Res. 2018, 56, 6450–6472. [Google Scholar] [CrossRef]
- Singh, J.; Singh, H.; Sharma, J.; Singh, T.; Singh, P.S. Fusible alloys: A potential candidate for gamma rays shield design. Prog. Nucl. Energy 2018, 106, 387–395. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Khatib, A.M.; Halbas, A.M.; El-Sharkawy, R.M. Investigation of physical, mechanical and gamma-ray shielding properties using ceramic tiles incorporated with powdered lead oxide. Ceram. Int. 2020, 46, 15686–15694. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Sayyed, M. Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceram. Int. 2019, 45, 24858–24864. [Google Scholar] [CrossRef]
- Kiani, M.A.; Ahmadi, S.J.; Outokesh, M.; Adeli, R.; Mohammadi, A. Preparation and characteristics of epoxy/clay/B4C nanocomposite at high concentration of boron carbide for neutron shielding application. Radiat. Phys. Chem. 2017, 141, 223–228. [Google Scholar] [CrossRef]
- Dian, E.; Klinkby, E.; Cooper-Jensen, C.; Párkányi, D.; Hajdú, D.; Osan, J.; Patriskov, G.; Filges, U.; Bentley, P. Preparation for activation measurements of concrete and PE-B4C-concrete to be applied for shielding at the European Spallation Source. J. Physics: Conf. Ser. 2018, 1021, 012050. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, L.; Zhang, Q.; Qiao, J.; Gong, D.; Wu, G. The design of a novel neutron shielding B4C/Al composite containing Gd. Mater. Des. 2016, 111. [Google Scholar] [CrossRef]
- Pang, X.; Xian, Y.; Wang, W.; Zhang, P. Tensile properties and strengthening effects of 6061Al/12 wtcomposites reinforced with nano-Al2O3 particles. J. Alloy. Compd. 2018, 768, 476–484. [Google Scholar] [CrossRef]
- Ducros, C.; Hauser, G.; Mahjoubi, N.; Girones, P.; Boisset, L.; Sorin, A.; Jonquet, E.; Falciola, J.M.; Benhamou, A. RICA: A Tracked Robot for Sampling and Radiological Characterization in the Nuclear Field. J. Field Robot. 2017, 34, 583–599. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, R.; Sasaki, R.; Okuda, S.; Okamoto, K.I.; Ogawa, Y.; Tsujimoto, T. Noise characteristics of neutron images obtained by cooled CCD device. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 605, 85–90. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, Y.; Zhang, F.; Bian, J.; Ma, W.; Yao, Z.; He, B.; Sheng, J.; Dong, G. Radiation damage evaluation of the CCD detector induced by high energy protons. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 924, 219–224. [Google Scholar] [CrossRef]
- Zhao, C.; Yan, Y.; Li, H.; Zhang, T.; Qiao, S. An effective gamma white spots removal method for CCD-based neutron images denoising. Fusion Eng. Des. 2020, 150, 111375. [Google Scholar] [CrossRef]
- Miller, A.; Machrafi, R.; Mohany, A. Development of a semi-autonomous directional and spectroscopic radiation detection mobile platform. Radiat. Meas. 2015, 72, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Wang, X.; Xing, H.; Liu, Y.; Zhang, M. Design and control of a tracked robot for search and rescue in nuclear power plant. In Proceedings of the 2016 International Conference on Advanced Robotics and Mechatronics (ICARM), Macau, China, 18–20 August 2016; pp. 330–335. [Google Scholar]
- Tsitsimpelis, I.; Taylor, C.J.; Lennox, B.; Joyce, M.J. A review of ground-based robotic systems for the characterization of nuclear environments. Prog. Nucl. Energy 2019, 111, 109–124. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.H.; Lee, S.U.; Kim, C.H.; Shin, H.C.; Seo, Y.C.; Lee, N.H.; Jung, K.M. Application of robotics for the nuclear power plants in Korea. In Proceedings of the 2010 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada, 5–7 October 2010; pp. 1–5. [Google Scholar]
- Galt, S.; Luk, B.L.; Cooke, D.S.; Collie, A.A. A tele-operated semi-intelligent climbing robot for nuclear applications. In Proceedings of the Proceedings Fourth Annual Conference on Mechatronics and Machine Vision in Practice, Toowoomba, Queensland, Australia, 23–25 September 1997; pp. 118–123. [Google Scholar]
- Guzman, R.; Navarro, R.; Ferre, J.; Moreno, M. RESCUER: Development of a Modular Chemical, Biological, Radiological, and Nuclear Robot for Intervention, Sampling, and Situation Awareness*. J. Field Robot. 2016, 33, 931–945. [Google Scholar] [CrossRef]
- De Vries, H.; van de Klundert, J.; Wagelmans, A.P. The Roadside Healthcare Facility Location Problem A Managerial Network Design Challenge. Prod. Oper. Manag. 2020, 29, 1165–1187. [Google Scholar] [CrossRef]
- Maxwell, M.; Ni, E.; Tong, C.; Henderson, S.; Topaloglu, H.; Hunter, S. A Bound on the Performance of an Optimal Ambulance Redeployment Policy. Oper. Res. 2014, 62, 1014–1027. [Google Scholar] [CrossRef] [Green Version]
- Valogianni, K.; Ketter, W.; Collins, J.; Zhdanov, D. Sustainable Electric Vehicle Charging using Adaptive Pricing. Prod. Oper. Manag. 2020, 29, 1550–1572. [Google Scholar] [CrossRef]
- Chen, J.; He, S.; Sun, Y.; Thulasiraman, P.; Shen, X. Optimal Flow Control for Utility-Lifetime Tradeoff in Wireless Sensor Networks. Comput. Netw. 2009, 53, 3031–3041. [Google Scholar] [CrossRef]
- Chen, J.; Xu, W.; He, S.; Sun, Y.; Thulasiraman, P.; Shen, X. Utility-Based Asynchronous Flow Control Algorithm for Wireless Sensor Networks. IEEE J. Sel. Areas Commun. 2010, 28, 1116–1126. [Google Scholar] [CrossRef]
- Kelly, F.; Maulloo, A.; Tan, D. Rate Control for Communication Networks:Shadow Prices, Proportional Fairness and Stability. J. Oper. Res. Soc. 1998, 49. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, C.; Chen, Y.; Alsaadi, F.; Cui, S. Resource Allocation for Multiple Access Channel with Conferencing Links and Shared Renewable Energy Sources. IEEE J. Sel. Areas Commun. 2015, 33, 423–437. [Google Scholar] [CrossRef]
- Kelly, F. Charging and Rate Control for Elastic Traffic. Eur. Trans. Telecommun. 1997, 8. [Google Scholar] [CrossRef] [Green Version]
- Sari, A.; Thiam, C.; Boudergui, K.; Carrel, F.; Coulon, R.; Dumazert, J.; Frangville, C.; Hamrita, H.; Lainé, F.; Trocmé, M.; et al. Investigation of fission chamber response in the frame of fuel debris localization measurements at Fukushima Daiichi. Radiat. Meas. 2019, 130, 106223. [Google Scholar] [CrossRef]
- Dolicanin, E.; Fetahovic, I. Monte Carlo optimization of redundancy of nanotechnology computer memories in the conditions of background radiation. Nucl. Technol. Radiat. Prot. 2018, 33, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Kibar, O.O.; Mohan, P.; Rech, P.; Mai, K. Evaluating the Impact of Repetition, Redundancy, Scrubbing, and Partitioning on 28-nm FPGA Reliability Through Neutron Testing. IEEE Trans. Nucl. Sci. 2019, 66, 248–254. [Google Scholar] [CrossRef]
Name | Description |
---|---|
deployment zone ID, | |
number of the UGVs in the deployment zone i | |
k | UGV ID in the deployment zone i, |
t | UGV ID, |
malfunction dose, = 50 Gy | |
absorption dose of the UGV | |
malfunction ratio of the UGV | |
number of the shielding boards of the UGV | |
index of the radioactive environment, | |
distance from the working area to the nearest building | |
threshold for the distance | |
deceasing ratio of the dose | |
parameter that refers to the working time of the UGV | |
parameter that refers to the working environment | |
W | budget of the expenditure on the shielding boards for all UGVs |
index set of the budget interval, | |
budget interval is denoted by | |
set of the budget interval, |
1 | 1 | 1 | 2 | 2 | 2 | |
---|---|---|---|---|---|---|
DZ | ||||||
Time (h) | ||||||
Averaged Dose (Gy) | 10.7 | 10.6 | 11.1 | 17.7 | 17.5 | 18.2 |
Malfunction Ratio (%) | 21 | 21 | 22 | 35 | 35 | 36 |
DZ | |||
---|---|---|---|
Number of UGVs | 425 | 357 | 250 |
Number of UGVs () | 298 | 216 | 164 |
Number of UGVs () | 127 | 141 | 86 |
with no shield (%) | 25.5 ± 7.9 | 26.5 ± 8.3 | 27.0 ± 8.5 |
with 1 shielding board (%) | 25.7 ± 8.9 | 26.9 ± 9.4 | 27.3 ± 9.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, Y.; Xie, Z. Allocation of Radiation Shielding Boards to Protect the Urban Search and Rescue Robots from Malfunctioning in the Radioactive Environments Arising from Decommissioning of the Nuclear Facility. Symmetry 2020, 12, 1297. https://doi.org/10.3390/sym12081297
Zhao Y, Zhang Y, Xie Z. Allocation of Radiation Shielding Boards to Protect the Urban Search and Rescue Robots from Malfunctioning in the Radioactive Environments Arising from Decommissioning of the Nuclear Facility. Symmetry. 2020; 12(8):1297. https://doi.org/10.3390/sym12081297
Chicago/Turabian StyleZhao, Yingjie, Yuxian Zhang, and Zhaoyang Xie. 2020. "Allocation of Radiation Shielding Boards to Protect the Urban Search and Rescue Robots from Malfunctioning in the Radioactive Environments Arising from Decommissioning of the Nuclear Facility" Symmetry 12, no. 8: 1297. https://doi.org/10.3390/sym12081297
APA StyleZhao, Y., Zhang, Y., & Xie, Z. (2020). Allocation of Radiation Shielding Boards to Protect the Urban Search and Rescue Robots from Malfunctioning in the Radioactive Environments Arising from Decommissioning of the Nuclear Facility. Symmetry, 12(8), 1297. https://doi.org/10.3390/sym12081297