Bounds on Relativistic Deformed Kinematics from the Physics of the Universe Transparency
Abstract
1. Introduction
2. Relativistic Deformed Kinematics
3. Threshold of Pair Production
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Appendix A. Equation for the Threshold Energy of Pair Production
Appendix A.1. Threshold in SR
Appendix A.2. Threshold Equation with LIV
Appendix A.3. Threshold Equation with a RDK
References
- Amati, D.; Ciafaloni, M.; Veneziano, G. Can Space-Time Be Probed Below the String Size? Phys. Lett. B 1989, 216, 41–47. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Samuel, S. Spontaneous Breaking of Lorentz Symmetry in String Theory. Phys. Rev. D 1989, 39, 683. [Google Scholar] [CrossRef]
- Garay, L.J. Quantum gravity and minimum length. Int. J. Mod. Phys. A 1995, 10, 145–166. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Ellis, J.R.; Mavromatos, N.; Nanopoulos, D.V.; Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 1998, 393, 763–765. [Google Scholar] [CrossRef]
- Gambini, R.; Pullin, J. Nonstandard optics from quantum space-time. Phys. Rev. D 1999, 59, 124021. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. String theory and noncommutative geometry. JHEP 1999, 9, 032. [Google Scholar] [CrossRef]
- Alfaro, J.; Morales-Tecotl, H.A.; Urrutia, L.F. Quantum gravity corrections to neutrino propagation. Phys. Rev. Lett. 2000, 84, 2318–2321. [Google Scholar] [CrossRef]
- Yoneya, T. String theory and space-time uncertainty principle. Prog. Theor. Phys. 2000, 103, 1081–1125. [Google Scholar] [CrossRef]
- Jacobson, T.; Liberati, S.; Mattingly, D. Threshold effects and Planck scale Lorentz violation: Combined constraints from high-energy astrophysics. Phys. Rev. D 2003, 67, 124011. [Google Scholar] [CrossRef]
- Alfaro, J. Quantum gravity and Lorentz invariance deformation in the standard model. Phys. Rev. Lett. 2005, 94, 221302. [Google Scholar] [CrossRef]
- Collins, J.; Perez, A.; Sudarsky, D.; Urrutia, L.; Vucetich, H. Lorentz invariance and quantum gravity: An additional fine-tuning problem? Phys. Rev. Lett. 2004, 93, 191301. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.; Liberati, S.; Mattingly, D. Lorentz violation at high energy: Concepts, phenomena and astrophysical constraints. Ann. Phys. 2006, 321, 150–196. [Google Scholar] [CrossRef]
- Hagar, A. Minimal length in quantum gravity and the fate of Lorentz invariance. Stud. Hist. Phil. Sci. B 2009, 40, 259–267. [Google Scholar] [CrossRef]
- Horava, P. Quantum Gravity at a Lifshitz Point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef]
- Hossenfelder, S. Minimal Length Scale Scenarios for Quantum Gravity. Living Rev. Rel. 2013, 16, 2. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef]
- Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Couturier, C.; Granot, J.; Stecker, F.W.; Cohen-Tanugi, J.; Longo, F. Constraints on Lorentz Invariance Violation from Fermi-Large Area Telescope Observations of Gamma-Ray Bursts. Phys. Rev. D 2013, 87, 122001. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Engels, A.A.; Baack, D.; Babić, A.; Banerjee, B.; de Almeida, U.B.; Barrio, J.A.; González, J.B.; et al. Bounds on Lorentz invariance violation from MAGIC observation of GRB 190114C. arXiv 2020, arXiv:2001.09728. [Google Scholar] [CrossRef]
- Abdalla, H.; Aharonian, F.; Benkhali, F.A.; Angüner, E.O.; Arakawa, M.; Arcaro, C.; Armand, C.; Arrieta, M.; Backes, M.; Barnard, M.; et al. The 2014 TeV γ-Ray Flare of Mrk 501 Seen with H.E.S.S.: Temporal and Spectral Constraints on Lorentz Invariance Violation. Astrophys. J. 2019, 870, 93. [Google Scholar] [CrossRef]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; De Almeida, U.B.; Barrio, J.A.; González, J.B.; et al. Constraining Lorentz invariance violation using the Crab Pulsar emission observed up to TeV energies by MAGIC. Astrophys. J. Suppl. 2017, 232, 9. [Google Scholar]
- Colladay, D.; Kostelecky, V.A. Lorentz violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef]
- Kislat, F.; Krawczynski, H. Planck-scale constraints on anisotropic Lorentz and CPT invariance violations from optical polarization measurements. Phys. Rev. D 2017, 95, 083013. [Google Scholar] [CrossRef]
- Mattingly, D. Modern tests of Lorentz invariance. Living Rev. Rel. 2005, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Jacob, U.; Piran, T. Inspecting absorption in the spectra of extra-galactic gamma-ray sources for insight on Lorentz invariance violation. Phys. Rev. D 2008, 78, 124010. [Google Scholar] [CrossRef]
- Biteau, J.; Williams, D.A. The extragalactic background light, the Hubble constant, and anomalies: Conclusions from 20 years of TeV gamma-ray observations. Astrophys. J. 2015, 812, 60. [Google Scholar] [CrossRef]
- Lang, R.G.; Martínez-Huerta, H.; de Souza, V. Improved limits on Lorentz invariance violation from astrophysical gamma-ray sources. Phys. Rev. D 2019, 99, 043015. [Google Scholar] [CrossRef]
- Martínez-Huerta, H.; Lang, R.G.; de Souza, V. The optical depth including Lorentz invariance violation energy threshold shifts. PoS 2018, BHCB2018, 010. [Google Scholar]
- Amelino-Camelia, G.; Piran, T. Planck scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV gamma paradoxes. Phys. Rev. D 2001, 64, 036005. [Google Scholar] [CrossRef]
- Horns, D.; Meyer, M. Indications for a pair-production anomaly from the propagation of VHE gamma-rays. JCAP 2012, 2, 033. [Google Scholar] [CrossRef][Green Version]
- Rubtsov, G.; Satunin, P.; Sibiryakov, S. Prospective constraints on Lorentz violation from ultrahigh-energy photon detection. Phys. Rev. D 2014, 89, 123011. [Google Scholar] [CrossRef]
- Rubtsov, G.; Satunin, P.; Sibiryakov, S. Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons. JCAP 2017, 5, 049. [Google Scholar] [CrossRef][Green Version]
- Galaverni, M.; Sigl, G. Lorentz Violation for Photons and Ultra-High Energy Cosmic Rays. Phys. Rev. Lett. 2008, 100, 021102. [Google Scholar] [CrossRef] [PubMed]
- Amelino-Camelia, G. Doubly special relativity: First results and key open problems. Int. J. Mod. Phys. D 2002, 11, 1643. [Google Scholar] [CrossRef]
- Magueijo, J.; Smolin, L. Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 2002, 88, 190403. [Google Scholar] [CrossRef] [PubMed]
- Kowalski-Glikman, J. Introduction to doubly special relativity. Lect. Notes Phys. 2005, 669, 131–159. [Google Scholar]
- Amelino-Camelia, G. Doubly-Special Relativity: Facts, Myths and Some Key Open Issues. Symmetry 2010, 2, 230–271. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Benedetti, D.; D’Andrea, F.; Procaccini, A. Comparison of relativity theories with observer independent scales of both velocity and length / mass. Class. Quant. Grav. 2003, 20, 5353–5370. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. On the fate of Lorentz symmetry in relative-locality momentum spaces. Phys. Rev. D 2012, 85, 084034. [Google Scholar] [CrossRef]
- Carmona, J.; Cortes, J.; Mercati, F. Relativistic kinematics beyond Special Relativity. Phys. Rev. D 2012, 86, 084032. [Google Scholar] [CrossRef]
- Carmona, J.; Cortes, J.; Relancio, J. Beyond Special Relativity at second order. Phys. Rev. D 2016, 94, 084008. [Google Scholar] [CrossRef]
- Carmona, J.; Cortes, J.; Relancio, J. Does a deformation of special relativity imply energy dependent photon time delays? Class. Quant. Grav. 2018, 35, 025014. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Observers and their notion of spacetime beyond special relativity. Symmetry 2018, 10, 231. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L. The principle of relative locality. Phys. Rev. D 2011, D84, 084010. [Google Scholar] [CrossRef]
- Einstein, A. Zur Elektrodynamik bewegter Körper. Annalen der Physik 1905, 322, 891–921. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Loret, N.; Rosati, G. Speed of particles and a relativity of locality in κ-Minkowski quantum spacetime. Phys. Lett. B 2011, 700, 150–156. [Google Scholar] [CrossRef]
- Loret, N. Exploring special relative locality with de Sitter momentum-space. Phys. Rev. D 2014, D90, 124013. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortés, J.L.; Romeo, B. Nonuniversal relativistic kinematics. Phys. Rev. D 2015, 91, 085036. [Google Scholar] [CrossRef]
- Albalate, G.; Carmona, J.; Cortés, J.L.; Relancio, J. Twin Peaks: A possible signal in the production of resonances beyond special relativity. Symmetry 2018, 10, 432. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona, J.M.; Cortés, J.L.; Pereira, L.; Relancio, J.J. Bounds on Relativistic Deformed Kinematics from the Physics of the Universe Transparency. Symmetry 2020, 12, 1298. https://doi.org/10.3390/sym12081298
Carmona JM, Cortés JL, Pereira L, Relancio JJ. Bounds on Relativistic Deformed Kinematics from the Physics of the Universe Transparency. Symmetry. 2020; 12(8):1298. https://doi.org/10.3390/sym12081298
Chicago/Turabian StyleCarmona, José Manuel, José Luis Cortés, Lucía Pereira, and José Javier Relancio. 2020. "Bounds on Relativistic Deformed Kinematics from the Physics of the Universe Transparency" Symmetry 12, no. 8: 1298. https://doi.org/10.3390/sym12081298
APA StyleCarmona, J. M., Cortés, J. L., Pereira, L., & Relancio, J. J. (2020). Bounds on Relativistic Deformed Kinematics from the Physics of the Universe Transparency. Symmetry, 12(8), 1298. https://doi.org/10.3390/sym12081298