The Usage of Alternative Materials to Optimize Bus Frame Structure
Abstract
:1. Introduction
2. Research Object and Experimental Modal Analysis
3. Numerical Analysis of the Modified Bus Body
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Helms, H.; Lambrecht, U. LCA Case Studies The Potential Contribution of Light-Weighting to Reduce Transport Energy Consumption. Int. J. Life Cycle Assess 2007, 12, 58–64. [Google Scholar]
- Maghrour Zefreh, M.; Torok, A. Theoretical Comparison of the Effects of Different Traffic Conditions on Urban Road Traffic Noise. J. Adv. Transp. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Younger, M.; Morrow-Almeida, H.R.; Vindigni, S.M.; Dannenberg, A.L. The Built Environment, Climate Change, and Health. Am. J. Prev. Med. 2008, 35, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Margaritis, D.; Anagnostopoulou, A.; Tromaras, A.; Boile, M. Electric commercial vehicles: Practical perspectives and future research directions. Res. Transp. Bus. Manag. 2016, 18, 4–10. [Google Scholar] [CrossRef]
- Heutel, G.; Ruhm, C.J. Air Pollution and Procyclical Mortality. J. Assoc. Environ. Resour. Econ. 2016, 3, 667–706. [Google Scholar] [CrossRef]
- Greenhouse Gas Emission Statistics-emission Inventories. Available online: https://ec.europa.eu/eurostat/statistics-explained/pdfscache/1180.pdf (accessed on 18 May 2020).
- Rimkus, A.; Pukalskas, S.; Matijošius, J.; Sokolovskij, E. Betterment of ecological parameters of a diesel engine using Brown‘s gas. J. Environ. Eng. Landsc. Manag. 2012, 21, 133–140. [Google Scholar] [CrossRef]
- Wenlong, S.; Xiaokai, C.; Lu, W. Analysis of Energy Saving and Emission Reduction of Vehicles Using Light Weight Materials. Energy Procedia 2016, 88, 889–893. [Google Scholar] [CrossRef] [Green Version]
- Yuce, C.; Karpat, F.; Yavuz, N.; Sendeniz, G. A Case Study: Designing for Sustainability and Reliability in an Automotive Seat Structure. Sustainability 2014, 6, 4608–4631. [Google Scholar] [CrossRef] [Green Version]
- Kilikevičienė, K.; Kačianauskas, R.; Kilikevičius, A.; Maknickas, A.; Matijošius, J.; Rimkus, A.; Vainorius, D. Experimental investigation of acoustic agglomeration of diesel engine exhaust particles using new created acoustic chamber. Powder Technol. 2019, 360, 421–429. [Google Scholar] [CrossRef]
- Gutarevych, Y.; Mateichyk, V.; Matijošius, J.; Rimkus, A.; Gritsuk, I.; Syrota, O.; Shuba, Y. Improving Fuel Economy of Spark Ignition Engines Applying the Combined Method of Power Regulation. Energies 2020, 13, 1076. [Google Scholar] [CrossRef] [Green Version]
- Hunicz, J.; Matijošius, J.; Rimkus, A.; Kilikevičius, A.; Kordos, P.; Mikulski, M. Efficient hydrotreated vegetable oil combustion under partially premixed conditions with heavy exhaust gas recirculation. Fuel 2020, 268, 117350. [Google Scholar] [CrossRef]
- Liu, Q.; Lin, Y.; Zong, Z.; Sun, G.; Li, Q. Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Compos. Struct. 2013, 97, 231–238. [Google Scholar] [CrossRef]
- Duan, S.; Yang, X.; Tao, Y.; Mo, F.; Xiao, Z.; Wei, K. Experimental and numerical investigation of Long Glass Fiber Reinforced Polypropylene composite and application in automobile components. Transport 2017, 33, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Joost, W.J. Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering. JOM 2012, 64, 1032–1038. [Google Scholar] [CrossRef] [Green Version]
- Andrzejczak, K.; Młyńczak, M.; Selech, J. Poisson-distributed failures in the predicting of the cost of corrective maintenance. Eksploat. Niezawodn. Maint. Reliab. 2018, 20, 602–609. [Google Scholar] [CrossRef]
- Rebaïne, F.; Bouazara, M.; Rahem, A.; St-Georges, L. Static and Vibration Analysis of an Aluminium and Steel Bus Frame. World J. Mech. 2018, 08, 112–135. [Google Scholar] [CrossRef] [Green Version]
- Sathishkumar, P.; Wang, R.; Yang, L.; Thiyagarajan, J. Trajectory control for tire burst vehicle using the standalone and roll interconnected active suspensions with safety-comfort control strategy. Mech. Syst. Signal Process. 2020, 142, 106776. [Google Scholar] [CrossRef]
- Mansfield, N.; Naddeo, A.; Frohriep, S.; Vink, P. Integrating and applying models of comfort. Appl. Ergon. 2020, 82, 102917. [Google Scholar] [CrossRef]
- Xu, L.; Xin, L.; Yu, Z.; Zhu, Z. Construction of a dynamic model for the interaction between the versatile tracks and a vehicle. Eng. Struct. 2020, 206, 110067. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, Y.; Li, Z.; Shi, C.; Yu, Z. Three-dimensional vehicle-ballasted track-subgrade interaction: Model construction and numerical analysis. Appl. Math. Model. 2020. [Google Scholar] [CrossRef]
- Zhi, P.; Li, Y.; Chen, B.; Shi, S. Bounds-based structure reliability analysis of bogie frame under variable load cases. Eng. Fail. Anal. 2020, 114, 104541. [Google Scholar] [CrossRef]
- Brumercik, F.; Lukac, M.; Caban, J.; Krzysiak, Z.; Glowacz, A. Comparison of Selected Parameters of a Planetary Gearbox with Involute and Convex-Concave Teeth Flank Profiles. Appl. Sci. 2020, 10, 1417. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.-B.; Zhang, W. Numerical analysis on steel-concrete-steel sandwich plates by damage plasticity model: From materials to structures. Constr. Build. Mater. 2017, 149, 801–815. [Google Scholar] [CrossRef]
- KilikevičIenė, K.; Skeivalas, J.; KilikevičIus, A.; PečEliūNas, R.; Bureika, G. The analysis of bus air spring condition influence upon the vibration signals at bus frame. Eksploat. Niezawodn. Maint. Reliab. 2015, 17, 463–469. [Google Scholar] [CrossRef]
- Kilikevičius, A.; Kilikevičienė, K.; Matijošius, J. Investigation of Drivers’ Comfort Factors Influencing Urban Traffic Safety. In Vision Zero for Sustainable Road Safety in Baltic Sea Region, Lecture Notes in Intelligent Transportation and Infrastructure; Varhelyi, A., Žuraulis, V., Prentkovskis, O., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 159–165. ISBN 978-3-030-22374-8. [Google Scholar]
- Kilikevičius, A.; Kilikevičienė, K.; Fursenko, A.; Matijošius, J. The Analysis of Vibration Signals of Critical Points of the Bus Body Frame. Period. Polytech. Transp. Eng. 2020, 48, 296–304. [Google Scholar] [CrossRef] [Green Version]
- Guruprasad, T.; Satish, B.; Maruhti, B.; Pramod, K.; Manjunatha, H. Bus body structural strength analysis through FEA. Int. J. Technol. Res. Eng. 2015, 2, 2494–2498. [Google Scholar]
- Chinta, P.; Rao, L.V.V. A New Design and Analysis of BUS Body Structure. IOSR J. Mech. Civ. Eng. 2014, 11, 39–47. [Google Scholar] [CrossRef]
- Chirwa, E.C.; Li, H.; Qian, P. Modelling a 32-seat bus and virtual testing for R66 compliance. Int. J. Crashworthiness 2015, 20, 200–209. [Google Scholar] [CrossRef]
- Karliński, J.; Ptak, M.; Działak, P.; Rusiński, E. Strength analysis of bus superstructure according to Regulation No. 66 of UN/ECE. Arch. Civ. Mech. Eng. 2014, 14, 342–353. [Google Scholar] [CrossRef]
- Gürsel, K.T.; Gürseslđ, S. Analysis of the Superstructure of a Designed Bus in Accordance with Regulations ECE R 66. Gazi Univ. J. Sci. 2010, 23, 71–80. [Google Scholar]
- Gepner, B.; Bojanowski, C.; Kwasniewski, L.; Wekezer, J. Effectiveness of ECE R66 and FMVSS 220 standards in rollover crashworthiness assessment of paratransit buses. Int. J. Automot. Technol. 2014, 15, 581–591. [Google Scholar] [CrossRef]
- Caban, J.; Rybicka, I. The Use of a Plate Conveyor for Transporting Aluminum Cans in the Food Industry. Adv. Sci. Technol.-Res. J. 2020, 14, 26–31. [Google Scholar] [CrossRef]
- Na, J.; Wang, T.; Wu, C.; Yan, Y. A four-node membrane element model with bending modification for one-step algorithm for bus rollover impact. Eng. Comput. 2015, 32, 607–620. [Google Scholar] [CrossRef]
- Buczaj, A.; Krzysiak, Z.; Pecyna, A.; Caban, J.; Brumercik, F. Safety during chemical transport of dangerous goods. Przem. Chem. 2019, 98, 1276–1280. [Google Scholar] [CrossRef]
- Sun, Q.; Yuan, G.; Huang, Y.; Shu, Q.; Li, Q. Structural behavior of supported tubular bus structure in substations under seismic loading. Eng. Struct. 2018, 174, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Nagai, M.; Yoshida, H.; Tohtake, T.; Suzuki, Y. Coupled vibration of passenger and lightweight car-body in consideration of human-body biomechanics. Veh. Syst. Dyn. 2006, 44, 601–611. [Google Scholar] [CrossRef]
- Kowarska, I.; Korta, J.; Kuczek, K.; Uhl, T. Fully Equipped Dynamic Model of a Bus. Shock Vib. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gauchía, A.; Olmeda, E.; Boada, M.J.L.; Boada, B.L.; Díaz, V. Methodology for bus structure torsion stiffness and natural vibration frequency prediction based on a dimensional analysis approach. Int. J. Automot. Technol. 2014, 15, 451–461. [Google Scholar] [CrossRef]
- Liu, T.; Tian, Y.; Xue, Q.; Wei, Z.; Qian, Y.; Feng, Y. An advanced three-way factor analysis model (SDABB model) for size-resolved PM source apportionment constrained by size distribution of chemical species in source profiles. Environ. Pollut. 2018, 242, 1606–1615. [Google Scholar] [CrossRef]
- Zöldy, M. Automotive Industry Solutions in Response to European Legislative Emission Regulation Challenge. Moksl. Liet. Ateitis 2009, 1, 33–40. [Google Scholar] [CrossRef]
- Deng, L.; Wang, W.; Cai, C.S. Effect of pavement maintenance cycle on the fatigue reliability of simply-supported steel I-girder bridges under dynamic vehicle loading. Eng. Struct. 2017, 133, 124–132. [Google Scholar] [CrossRef]
- Haryanto, I.; Raharjo, F.A.; Kurdi, O.; Haryadi, G.D. Optimization of Bus Body Frame Structure for Weight Minimizing with Constraint of Natural Frequency using Adaptive Single-Objective Method. Int. J. Sustain. Transp. Technol. 2018, 1, 9–14. [Google Scholar] [CrossRef] [Green Version]
Vehicle length, mm | 8480 |
Chassis base, mm | 4750 |
Vehicle width, mm | 2440 |
Vehicle height, mm | 3100 |
Total actual vehicle mass, kg | 6220 |
Maximum technically permitted weight of a loaded vehicle, kg | 7200 |
Number of seats (without a driver and a guide), pcs. | 29 |
Mode No | Frequencies | Δ = fFE/fEXP, OMA | |
---|---|---|---|
fEXP, OMA, Hz | fFEM, Hz | ||
1 | 6.512 | 6.711 | 1.031 |
2 | 7.752 | 8.115 | 1.047 |
3 | 9.841 | 9.912 | 0.721 |
Steel 1.4003 (STALA400F) | GFRP (Vinyl Ester Resin) | ||
---|---|---|---|
Property | - | Directionality | |
- | Longitudinal | Crosswise | |
Density | 7700 kg/m3 | 2000 kg/m3 | |
Tensile ultimate strength (MPa) | - | 364 | |
Compressive ultimate strength (MPa) | - | 364 | |
Young’s modulus (MPa) | 220,000 | 39,000 | 4875 |
Poisson’s ratio | 0.28 | 0.035 | 0.335 |
Shear modulus (MPa) | - | 3358 | 3342 |
Mode No. | Resonant Frequencies, Hz and the Change Δ = fFEsteel/fFE | ||||||
---|---|---|---|---|---|---|---|
Option1 | Option2 | Option3 | Option4 | ||||
Steel | Steel and Fiberglass (Safety Arcs) | Steel and Fiberglass (Roof and Sides) | Fiberglass | ||||
Frequency, Hz | Frequency, Hz | Change Δ = fFEsteel/fFE | Frequency, Hz | Change Δ = fFEsteel/fFE | Frequency, Hz | Change Δ = fFEsteel/fFE | |
1 | 6.711 | 4.789 | 1.401 | 6.009 | 1.117 | 2.654 | 2.529 |
2 | 8.115 | 7.421 | 1.094 | 6.811 | 1.191 | 3.033 | 2.676 |
3 | 9.912 | 9.421 | 1.052 | 8.785 | 1.128 | 3.692 | 2.685 |
4 | 14.230 | 12.063 | 1.180 | 10.068 | 1.413 | 4.846 | 2.936 |
5 | 14.863 | 12.173 | 1.221 | 11.442 | 1.299 | 4.962 | 2.995 |
Option 1 | Option 2 | Option 3 | Option 4 |
Material steel | Material steel and fiberglass (safety bows) | Material steel and fiberglass (roof and sides) | Material fiberglass |
Construction mass, kg | |||
921.5 | 749.3 | 817.9 | 239.6 |
Coordinate of the center of gravity in direction Z (Figure 4a), mm | |||
0 | −125.1 | −111.37 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pravilonis, T.; Sokolovskij, E.; Kilikevičius, A.; Matijošius, J.; Kilikevičienė, K. The Usage of Alternative Materials to Optimize Bus Frame Structure. Symmetry 2020, 12, 1010. https://doi.org/10.3390/sym12061010
Pravilonis T, Sokolovskij E, Kilikevičius A, Matijošius J, Kilikevičienė K. The Usage of Alternative Materials to Optimize Bus Frame Structure. Symmetry. 2020; 12(6):1010. https://doi.org/10.3390/sym12061010
Chicago/Turabian StylePravilonis, Tautvydas, Edgar Sokolovskij, Artūras Kilikevičius, Jonas Matijošius, and Kristina Kilikevičienė. 2020. "The Usage of Alternative Materials to Optimize Bus Frame Structure" Symmetry 12, no. 6: 1010. https://doi.org/10.3390/sym12061010