# Canonical Transformation of Potential Model Hamiltonian Mechanics to Geometrical Form I

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basic Mathematical Formulation

## 3. Geodesic Deviation

## 4. Formulation of the Algorithm

## 5. Study of the One-Dimensional Case

## 6. Convergence of the Algorithm in One Dimension

## 7. Shift of Origin for Expansion

## 8. Change in Generating Function Induced by Diffeomorphisms in the Geometric Space

## 9. One-Dimensional Conformal Metric

## 10. Mapping of Bounded Submanifolds

## 11. Summary and Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Horwitz, L.; Zion, Y.B.; Lewkowicz, M.; Schiffer, M.; Levitan, J. Geometry of Hamiltonian chaos. Phys. Rev. Lett.
**2007**, 98, 234301. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Pettini, M. Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics; Springer: New York, NY, USA, 2007. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1978. [Google Scholar]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer: New York, NY, USA, 1983. [Google Scholar]
- DiBenedetto, E. Classical Mechanics, Theory and Mathematical Modelling; Springer: New York, NY, USA, 2011. [Google Scholar]
- Alligood, K.T.; Sauer, T.D.; Yorke, J.A. Chaos, and Introduction to Dynamical Systems; Springer: New York, NY, USA, 1996. [Google Scholar]
- Gutzwiller, M.C. Chaos in Classical and Quantum Mechanics; Springer: New York, NY, USA, 1990. [Google Scholar]
- Curtis, W.D.; Miller, F.R. Differentiable Manifolds and Theoretical Physics; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley and Sons: New York, NY, USA, 1972. [Google Scholar]
- Zion, Y.B.; Horwitz, L. Detecting order and chaos in three dimensional Hamiltonian systems by geometrical methods. Phys. Rev. E
**2007**, 76, 046220. [Google Scholar] [CrossRef] [PubMed] - Zion, Y.B.; Horwitz, L. Applications of geometrical criteria for transition to Hamiltonian chaos. Phys. Rev. E
**2007**, 78, 036209. [Google Scholar] [CrossRef] [PubMed] - Zion, Y.B.; Horwitz, L. Controlling effect of geometrically defined local structural changes on chaotic systems. Phys. Rev. E
**2010**, 81, 046217. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lewkowicz, M.; Levitan, J.; Zion, Y.B.; Horwitz, L.P. Geometry of Local Instability in Hamiltonian Dynamics. In Handbook of Applications of Chaos Theory; Chapman and Hall, CRC Press: New York, NY, USA, 2016; Chapter. 15; pp. 231–252. [Google Scholar]
- Horwitz, L.P.; Yahalom, A.; Levitan, J.; Lewkowicz, M. An underlying geometrical manifold for Hamiltonian mechanics. Front. Phys.
**2016**, 12, 124501. [Google Scholar] [CrossRef] [Green Version] - Calderon, E.; Horwitz, L.; Kupferman, R.; Shnider, S. On the geometric formulation of Hamiltonian dynamics. Chaos
**2013**, 23, 013120. [Google Scholar] [CrossRef] [PubMed] - Da Silva, A.C.; Da Salva, A.C. Lectures on Sympletic Geometry; Lecture Notes in Mathematics 1764; Springer: New York, NY, USA, 2006. [Google Scholar]
- Strauss, Y.; Horwitz, L.P.; Levitan, J.; Yahalom, A. Quantum field theory of Hamiltonian chaos. J. Math. Phys.
**2015**, 56, 072701. [Google Scholar] [CrossRef] [Green Version] - Hille, E. Ordinary Differential Equations in the Complex Plane; John Wiley and Sons: New York, NY, USA, 1976. [Google Scholar]
- Frankel, T. The Geometry of Physics. An Introduction; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Milnor, J. Morse Theory; Annals of Mathematics Studies 51; Princeton University Press: Princeton, NJ, USA, 1969. [Google Scholar]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Strauss, Y.; Horwitz, L.P.; Levitan, J.; Yahalom, A.
Canonical Transformation of Potential Model Hamiltonian Mechanics to Geometrical Form I. *Symmetry* **2020**, *12*, 1009.
https://doi.org/10.3390/sym12061009

**AMA Style**

Strauss Y, Horwitz LP, Levitan J, Yahalom A.
Canonical Transformation of Potential Model Hamiltonian Mechanics to Geometrical Form I. *Symmetry*. 2020; 12(6):1009.
https://doi.org/10.3390/sym12061009

**Chicago/Turabian Style**

Strauss, Yosef, Lawrence P. Horwitz, Jacob Levitan, and Asher Yahalom.
2020. "Canonical Transformation of Potential Model Hamiltonian Mechanics to Geometrical Form I" *Symmetry* 12, no. 6: 1009.
https://doi.org/10.3390/sym12061009