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Abstract: The conditional Lie–Bäcklund symmetry method is applied to investigate the functionally
generalized separation of variables for quasi-linear diffusion equations with a source. The equations
and the admitted conditional Lie–Bäcklund symmetries related to invariant subspaces are
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variables are constructed for the resulting equations due to the corresponding symmetry reductions.
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1. Introduction

The separation of variables is the most widely used method for solving linear heat- and
mass-transfer equations and other linear equations of mathematical physics. The productive separable
solutions were presented in [1,2]. The additive separable solutions were constructed for some classes
of nonlinear first-order partial differential equations (PDEs) in [3,4], and for some nonlinear heat- and
mass-transfer and wave equations of the second and higher orders in [5,6]. The functional separation
of variables (FSV)

f (u) = φ(x) + ψ(t) (1)

is sought for some nonlinear wave and heat equations. The solutions of this form were also obtained [7]
for the nonlinear diffusion equation ut = [D(u)ux]x.

The nonlinear separation of variables (NSV)

u = φ(x)ψ(t) + η(t) (2)

was introduced [8,9] for the study of the nonlinear parabolic equation. The generalized separation of
variables (GSV)

u = C̃1(t) f̃1(x) + C̃2(t) f̃2(x) + · · ·+ C̃n(t) f̃n(x) (n ≥ 2) (3)

can also provide exact solutions involving more summands, which was extensively discussed by the
invariant subspace method [10].

The additive separable solutions and the productive separable solutions are both the particular
case of the FSV (1) and the GSV (3). A further extension to the separable solutions is of the form

f (u) = C1(t) f1(x) + C2(t) f2(x) + · · ·+ Cn(t) fn(x) (n ≥ 2), (4)
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which we call the functionally generalized separation of variables (FGSV). It can be regarded as
a natural generalization of GSV in a similar way to how FSV is a generalization of the additive
separation of variables. The more general separable solutions

f (u) = φ0(t) + φ1(t)g1(x, t) + φ2(t)g2(x, t) + · · ·+ φn(t)gn(x, t)

are proposed due to the additional generating condition method in [11]. All these different types
of separable solutions are very useful to study different kinds of PDEs. This is particularly true for
nonlinear diffusion equations [10–13].

Conditional Lie–Bäcklund symmetry (CLBS) [14]

ρ = [ f (u)]xt (5)

is introduced to study FSV (1). The key point is due to the compatibility of ρ = 0 and the governing
equation. As a consequence, CLBS

σ = [ f (u)]nx + a1(x) [ f (u)](n−1)x + · · ·+ an(x) f (u) (6)

can be used to study FGSV (4). It is noted that [ f (u)]kx = ∂k f (u)/∂xk and k = 1, 2, · · · , n.
A great number of publications have been devoted to study the quasi-linear diffusion equation

with a source

ut = [D(u)ux]x + Q(u), x ∈ R, t > 0, (7)

where D(u) and Q(u) are respectively the diffusion and source term. The involved methods
include the Lie-point symmetry method [15], the nonclassical symmetry method [16,17], the CLBS
method [18–21], the nonlocal symmetry method [22], the truncated Painlevé approach [23],
the differential constraints method [24], the sign-invariant and invariant subspace method [25,26],
the transformation method [27,28], the ansatz-based method [29], the spectral volume method [30], etc.

The studies about FSV (1), NSV (2), and FGSV (4) of Equation (7) can respectively refer
to [14,31], [31,32], and [10,31]. CLBS (6) is the key point to consider FGSV (4) of Equation (7).
Equation (7) admits CLBS (6) is equivalent to saying that the equation

vt = A(v)vxx + B(v)v2
x + C(v) (8)

admits the CLBS

η = vnx + a1(x)v(n−1)x + · · ·+ an(x)v. (9)

In fact, Equation (8) can be derived from Equation (7) due to the transformation v = f (u),
and these two equations are related as

A(v) = D[g(v)], B(v) = A′(v) +
g
′′
(v)

g′(v)
A(v), C(v) =

Q[g(v)]
g′(v)

, (10)

where u = g(v) is the inverse function of v = f (u).
CLBS (9) is the key point to give a symmetry interpretation to the invariant subspace method

proposed by Galaktionov and Svirshchevskii [10]. Since Equation (8) admits CLBS (9), it is easy to
know that the corresponding group invariant solutions of Equation (8) are exactly defined on the linear
solution space

Sn = S { f1(x), f2(x), · · · , fn(x)} ≡ {Σn
i=1Ci fi(x), Ci ∈ R} (11)
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determined by the linear ordinary differential equation (ODE) η = 0. It is proved that the maximal
dimension of the linear solution space is five for the second-order diffusion Equation (8) [33].
This confines oneself to study CLBS (9) with 2 ≤ n ≤ 5 of Equation (8).

The classifications and reductions of the nonlinear diffusion equations with convection and
the source

ut = [D(u)ux]x + P(u)ux + Q(u)

due to CLBS (6) were studied in [34], where the studies were concerned with the case of P(u) 6= 0.
Indeed, some results can degenerate to the case of P(u) = 0. However, most of these degenerated
cases correspond to x-independent a1(x) and x-independent a2(x). Here, we are mainly concerned
with x-dependent ai(x) (i = 1, 2).

The remainder of this paper is arranged as follows. In Section 2, the classification of Equation (7)
due to CLBS (6) is presented. In the subsequent section, the FGSV (4) of Equation (7) is constructed.
The last section is devoted to the conclusions.

2. Conditional Lie-Bäcklund Symmetry (6) of Equation (7)

Consider a nonlinear evolution equation

ut = F(t, x, u, ux, u2x, · · · , ukx) (12)

with Lie–Bäcklund vector field (LBVF)

V = η
∂

∂u
+ Dxη

∂

∂ux
+ Dtη

∂

∂ut
+ D2

xη
∂

∂u2x
+ DxDtη

∂

∂uxt
· · · , (13)

where η = η(x, t, u, ux, ut, u2t, uxt, · · · ) is the characteristic of LBVF (13) and the total differentiation
operators respectively denote

Dt =
∂
∂t + ut

∂
∂u + u2t

∂
∂ut

+ uxt
∂

∂ux
+ · · · ,

Dx = ∂
∂x + ux

∂
∂u + uxt

∂
∂ut

+ u2x
∂

∂ux
+ · · · .

Definition 1. The evolutionary vector field (13) is said to be a Lie–Bäcklund symmetry of the evolution
Equation (12) if the condition

V (ut − F) |M= 0

holds, where M denotes the set of all differential consequences of the Equation (12).

Definition 2. The evolutionary vector field (13) is said to be a CLBS of (12) if the following condition

V (ut − F) |M∩Lx = 0

holds, where Lx denotes the set of all differential consequences of equation η = 0 with respect to x.

The following proposition is useful for further study.

Proposition 1 ([18,19]). Equation (8) admits the CLBS (9) if there exists a function W(t, x, v, η) such that

∂η

∂t
= [F, η] + W(t, x, v, η), W(t, x, v, 0) = 0,
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where [F, η] = F′η − η′F and F[v] = A(v)vxx + B(v)v2
x + C(v), the prime denotes the Gateaux derivative,

and W is an analytic function of t, x, v, vx, · · · and η, Dxη, D2
xη, · · · .

A direct conclusion of this proposition is that Equation (8) admits the CLBS with the
characteristic (9) if

Dtη|L∩M = 0, (14)

where M is the set of all differential consequences of the equation, that is,

vt − F[v] = 0, Dj
xDk

t (vt − F[v]) = 0, j, k = 0, 1, 2, · · ·

and L denotes the set of all differential consequences of equation η = 0 with respect to x, that is,

Dj
xη = 0, j = 0, 1, 2, · · · .

(14) is equivalent to

(F[v])nx + a1(x) (F[v])(n−1)x + · · ·+ an(x) (F[v]) |M = 0, (15)

which is the right sufficient condition that the linear space (11) is invariant with respect to the operator
F[·] [10].

Different cases will be considered respectively according to different cases of n = 2, 3, 4, 5.
For n = 2, a direct computation from (15) gives a polynomial about vx. The vanishing of all the
coefficients yields the following over-determined system about the unknown functions in Equation (8)
and the CLBS (9), which is listed as

B
′′
= 0,

a1(4B′ + A
′′
) = 0,

2(a2
1 − a′1 − a2)A′ − a2[v(A

′′
+ 5B′) + B] + C

′′
+ 2(a2

1 − a′1)B = 0, (16)

(3a1a2 − 2a′2)vA′ − (a
′′
1 − 2a1a′1 + 2a′2)A + 2(2a1a2 − a′2)vB = 0,

a2
2v2 A′ + (2a′1a2 − a

′′
2)vA + 2a2

2v2B + a2(C− vC′) = 0.

We can not give the general solutions of the determining system (16) since it is a coupled nonlinear
system of PDEs. The workable way is to find as many particular solutions as possible.

The first equation of the determining system (16) gives B(v) = b1v + b2. As a consequence,
the second one of (16) can be simplified as

a1(4b1 + A
′′
) = 0.

Thus, we consider two cases for further study.

Case 1. a1(x) = 0.

Substituting B(v) = b1v + b2 and a1(x) = 0 into the system (16) and solving the resulting system,
we can finally determine A(v), B(v), C(v), and a2(x). The corresponding results are listed as

(i) A(v)arbitrary, B(v) = b1v + b2, C(v) = c1v + c2, a2(x) = 0;

(ii) A(v)arbitrary, B(v) = b1v, C(v) = [s(b1v2 + A(v)) + c1]v, a2(x) = s(s 6= 0);

(iii) A(v) = −1
2

b2v, B(v) = b2, C(v) = c1v, a
′′
2(x) + 3a2

2(x) = 0(a2(x) 6= s);

(iv) A(v) =
k1

v
, B(v) = 0, C(v) = c1v + c2, k1[a

′′
2(x) + a2

2(x)]− c2a2(x) = 0(a2(x) 6= s).
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In [10], it is shown that the IS(11) is also invariant with respect to the operator F[v] + pv if (11) is
invariant with the operator F[v]. Thus, vt = F[v] + pv admits linear CLBS (9) if Equation (8) admits
the linear CLBS (9). Hence, we can omit the linear term about v in C(v). For the case (i), the second
one of (10) becomes

g
′′
(v)

g′(v)
=

b1v + b2 − A′(v)
A(v)

.

It is well known that the diffusion coefficient D(u) is a power function or exponential function.
In general, we consider the following five cases to identify the transformation u = g(v), which are
presented as

(1) A(v) = v2, B(v) = kv (k 6= 1);

(2) A(v) = v2, B(v) = v;

(3) A(v) = vk (k 6= 1), B(v) = 0;

(4) A(v) = v, B(v) = 0;

(5) A(v) = v, B(v) = k (k 6= 0).

For the case of A(v) = v2, B(v) = kv (k 6= 1), the second one of (10) is simplified as

g
′′
(v)

g′(v)
=

k− 2
v

.

g(v) = vk−1 can be obtained by solving this equation, which is of the canonical coordinate form

without considering the translation and scaling transformations. Consequently, D(u) = u
2

k−1 and

Q(u) = (k − 1)qu
k−2
k−1 are given from the first one and third one of (10) due to the transformation

u = vk−1. A similar discussion for Cases 2–5 will identify the corresponding governing Equation
(7) and the admitted CLBS (6). The procedure of solving the system (16) for the case of (ii) is almost
the same as that for the case of (i). Since the obtained a1(x) and a2(x) for these two cases are both
x-independent and the resulting CLBS (6) and the governing Equation (7) are all special cases of the
ones in [34], we do not consider these special cases for further study. So is the case for all the similar
ones appearing below.

For the case of (iii), Equation (8) is invariant with respect to scaling transformation about x.
Therefore, we consider A(v) = v, B(v) = −2 without loss of generality. The transformation u = 1/v2

is obtained by solving the second one of (10). Consequently, D(u) = u−
1
2 and Q(u) = 0 are given.

a2(x) satisfy the nonlinear ODE

a
′′
2(x) + 3a2

2(x) = 0.

Now that the general solution of this ODE is in terms of the Weierstrass function, the solution of
second-order linear ODE vxx + a2(x)v = 0 is not analytic. Hence, the analytic solution of Equation (8)
can not be constructed due to the corresponding symmetry reductions. However, the particular
CLBS (9) will lead to symmetry reductions of the governing Equation (8). Thus, we can satisfy our
study by finding CLBS (9) in particular cases. Considering the form of the equation about a2(x),
we apply the power law function constraint. a2(x) = − 2

x2 is determined, which will yield the
analytic solution of Equation (8). The corresponding result is listed as Case 9 for s = −2 in Table 1.
The corresponding results for Case (iv) is also presented as Case 1 of Table 1.
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Table 1. Conditional Lie–Bäcklund symmetry (CLBS) (6) for Equation (7).

No. Equation (7) CLBS (6)

1 ut =
(

u−
1
2 ux

)
x

σ =
(

u
1
2

)
xx
− 6

x2 u
1
2

2 ut =
(

u
1
k ux

)
x
+ kqu

k−1
k σ =

(
u

1
k

)
xx
− 1

x

(
u

1
k

)
x

3 ut = [exp (u)ux]x + q exp (−u) σ = [exp (u)]xx −
1
x [exp (u)]x

4 ut =
(

u−
4
3 ux

)
x
− 3

2 qu
5
3 σ =

(
u−

2
3

)
xx
− 1

x

(
u−

2
3

)
x

5 ut =
(

u
1
k ux

)
x
+ k(k + 1)su

k+1
k + kqu

k−1
k σ =

(
u

1
k

)
xx

+
√

s tan
(√

sx
) (

u
1
k

)
x

σ =
(

u
1
k

)
xx
−
√

s cot
(√

sx
) (

u
1
k

)
x

σ =
(

u
1
k

)
xx
−
√
−s tanh

(√
−sx

) (
u

1
k

)
x

σ =
(

u
1
k

)
xx
−
√
−s coth

(√
−sx

) (
u

1
k

)
x

6 ut = [exp (u)ux]x + s exp(u) + q exp (−u) σ = [exp (u)]xx +
√

s tan
(√

sx
)
[exp (u)]x

σ = [exp (u)]xx −
√

s cot
(√

sx
)
[exp (u)]x

σ = [exp (u)]xx −
√
−s tanh

(√
−sx

)
[exp (u)]x

σ = [exp (u)]xx −
√
−s coth

(√
−sx

)
[exp (u)]x

7 ut =
(

u−
4
3 ux

)
x
− 3

4 su−
1
3 − 3

2 qu
5
3 σ =

(
u−

2
3

)
xx

+
√

s tan
(√

sx
) (

u−
2
3

)
x

σ =
(

u−
2
3

)
xx
−
√

s cot
(√

sx
) (

u−
2
3

)
x

σ =
(

u−
2
3

)
xx
−
√
−s tanh

(√
−sx

) (
u−

2
3

)
x

σ =
(

u−
2
3

)
xx
−
√
−s coth

(√
−sx

) (
u−

2
3

)
x

8 ut =
(

u−
4
3 ux

)
x

σ =
(

u−
2
3

)
xx
− 2

x

(
u−

2
3

)
x
+ 2

x2 u−
2
3

σ =
(

u−
4
3

)
xx
− 6

x

(
u−

4
3

)
x
+ 12

x2 u−
4
3

9 ut =
(

u
s

2−s ux

)
x

σ =
(

u
s

2−s

)
xx
− s+2

2x

(
u

s
2−s

)
x
+ s

x2 u
s

2−s

10 ut = [exp (u)ux]x σ = [exp (u)]xx −
2
x [exp (u)]x +

2
x2 exp (u)

11 ut = (u−
4
3 ux)x − 3

4 qu
7
3 σ = (u−

4
3 )xxx − 3

x (u
− 4

3 )xx +
3
x2 (u−

4
3 )x

12 ut = (u−
4
3 ux)x σ = (u−

4
3 )xxx − 6

x (u
− 4

3 )xx +
18
x2 (u−

4
3 )x − 24

x3 u−
4
3

13 ut = (u−
4
3 ux)x − 3

4 su−
1
3 − 3

4 qu
7
3 σ = (u−

4
3 )xxx + 3

√
s tan

(√
sx
)
(u−

4
3 )xx

+
[
1 + 3 tan2 (√sx

)]
s(u−

4
3 )x

σ = (u−
4
3 )xxx − 3

√
s cot

(√
sx
)
(u−

4
3 )xx

+
[
1 + 3 cot2 (√sx

)]
s(u−

4
3 )x

σ = (u−
4
3 )xxx − 3

√
−s tanh

(√
−sx

)
(u−

4
3 )xx

+
[
1− 3 tanh2 (√−sx

)]
s(u−

4
3 )x

σ = (u−
4
3 )xxx − 3

√
−s coth

(√
−sx

)
(u−

4
3 )xx

+
[
1− 3 coth2 (√−sx

)]
s(u−

4
3 )x

Case 2. a1(x) 6= 0.

A(v) = −2b1v2 + k1v + k2 is given by solving 4b1 + A
′′
= 0. Since the power or exponential law

diffusion is the usual phenomenon, A(v) and B(v) take the form of

(1) A(v) = v, B(v) = k (k 6= 0);

(2) A(v) = v, B(v) = 0;

(3) A(v) = v2, B(v) = −1
2

v.
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Accordingly,

(1) D(u) = u
1
k , g(v) = vk;

(2) D(u) = exp(u), g(v) = ln(u);

(3) D(u) = u−
4
3 , g(v) = v−

3
2

will be derived due to the the first two equation of (10). For the case of A(v) = v, B(v) = k (k 6= 0),
C(v) = c1v2 + c2 + c3 can be derived from the third one of the determining system (16). Then, the last
one of the system becomes[

−a
′′
2(x) + (2k + 1)a2

2(x) + 2a2(x)a
′
2(x)− c1a2(x)

]
v2 + c3a2(x) = 0.

a2(x) = 0 and a2(x) 6= 0 will be respectively considered.
For the case of a2(x) = 0, the determining system (16) is finally simplified as

(k + 1)
[

a2
1(x)− a

′
1(x)

]
+ c1 = 0,

a
′′
1(x)− 2a1(x)a

′
1(x) = 0.

It is easy to know that a1(x) = s and c1 = −(k + 1)s2 satisfy the system. In addition, this system
can be rewritten as c1 = −(k + 1)s and

a1(x)2 − a
′
1(x) = s.

The form of a1(x) can be represented as

• a1(x) = − 1
x

f or s = 0;

• a1(x) =
√

s tan (
√

sx) or a1(x) = −
√

s cot (
√

sx) f or s > 0;

• a1(x) = −
√
−s tanh (

√
−sx) or a1(x) = −

√
−s coth (

√
−sx) f or s < 0.

The corresponding Equation (7) and the admitted CLBS (6) are listed in Table 1.
For the case of a2(x) 6= 0, c3 = 0 must hold. The third one of (16) is simplified as

−(k + 2)a2(x)− 2(k + 1)
[

a′1(x)− a2
1(x)

]
+ 2c1 = 0.

It becomes c1 + a′1(x)− a2
1(x) = 0 in view of k = −2. a1(x)a2(x) = 0 can be derived from the

fourth one of (16), which is contrary to a1(x) = 6= 0 and a2(x) = 6= 0. For the case of k 6= −2, the fourth
equation of (16) becomes

(4k + 3)
[
(k + 2)a

′′
1(x) + 2(k + 1)a3

1(x)− 2(2k + 3)a1(x)a′1(x) + 2c1a1(x)
]
= 0

due to

a2(x) =
−2(k + 1)

[
a′1(x)− a2

1(x)
]
+ 2c1

k + 2
.

Thus, the fourth one of (16) holds for the case of k = − 3
4 . In addition, the last one becomes

−5a
′′′
1 (x) + 10a1(x)a

′′
1(x) + 21a′21 (x)− 12a′1(x)a2

1(x)

−53c1a′1(x) + 13c1a2
1(x) + a4

1(x) = 0.
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Although it is impossible to present the general solution of this nonlinear ODE, we can find that

• a1(x) = l, a2(x) =
2
9

l2;

• a1(x) = − 5
x

a2(x) =
8
x2 and c1 = 0;

• a1(x) = − 6
x

a2(x) =
12
x2 and c1 = 0

satisfy the system (16). For the case of k 6= − 3
4 , a1(x) = − s+2

2x , a2(x) = s
x2 and k = 2−s

s can be obtained
by solving the determining system (16). The corresponding Equation (7) and the admitted CLBS (6) for
these cases are all listed in Table 1. We omit the tedious computational procedure for Cases (2) and (3)
and just list the corresponding results in Table 1. It is noted that c, k, s, and q in Table 1 are arbitrary
constants hereafter.

Although the determining system (16) is exactly the special case of the one in [34], we find many
particular solutions of System (16) that are not special cases of the results listed in [34].
As a consequence, new forms of Equation (7) and the admitted CLBS (6) are obtained. A similar
procedure as for n = 2 will yield CLBS (6) with n = 3, 4, 5 of Equation (7), and these results are also
listed in Table 1.

It is interesting to note that some particular equations (including the ones in Cases 1, 8, and 10
of Table 1) admit several CLBSs. These different CLBSs of the same governing equation will naturally
lead to different forms of exact solutions.

3. Exact Solutions of Equation (7)

In this section, we construct exact solutions of Equation (7) due to the compatibility of σ = 0
and the governing equation (7). σ = 0 is exactly the invariant surface condition of the corresponding
CLBS (6) admitted by Equation (7). Since σ = 0 can be linearized due to the transformation f (u) = v,
the corresponding solution is exactly defined on the space (11) and possesses the form

u = g [C1(t) f1(x) + C2(t) f2(x) + · · ·+ Cn(t) fn(x)] (2 ≤ n ≤ 5),

which is known as FGSV. Substituting the resulting solution into (7) will finally yield that the
t-dependent coefficients Ci(t) (i = 1, 2, · · · , n) satisfy the finite-dimensional dynamical system.
Here, we just present several examples to illustrate the reduction procedure.

Example 1. Equation

ut =
(

u
1
k ux

)
x
+ kqu

k−1
k

admits the CLBS

σ =
(

u
1
k

)
xx
− 1

x

(
u

1
k

)
x

.

The corresponding solutions are given by

u(x, t) =
[
α(t) + β(t)x2

]k
,

where α(t) and β(t) are listed as below.
(i) For k 6= −1,

α(t) =
[2(2k + 1)t− c1]q

4(k + 1)
+ c2[2(2k + 1)t− c1]

− 1
2k+1 , β(t) =

1
c1 − 2(2k + 1)t

.
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(ii) For k = −1,

α(t) =
[

1
2

q ln(2t + c1)

]
(2t + c1), β(t) =

1
2t + c1

.

For the case of k < 0, the solutions have the asymptotical behavior u −→ 0 as x −→ ∞ and exhibit
singularity along the curves x = ± [(−α/β)+]

1/2.

Example 2. Equation

ut =
(

u
1
k ux

)
x
+ k(k + 1)su

k+1
k + kqu

k−1
k

admits the CLBS

σ =
(

u
1
k

)
xx
−
√

s cot
(√

sx
) (

u
1
k

)
x

for the case of s > 0 and

σ =
(

u
1
k

)
xx
−
√
−s coth

(√
−sx

) (
u

1
k

)
x

for the case of s < 0.

The corresponding separable solutions are respectively

u(x, t) =
[
α(t) + β(t) cos

(√
sx
)]k

and

u(x, t) =
[
α(t) + β(t) cosh

(√
−sx

)]k
,

where α(t) and β(t) satisfy two-dimensional dynamical system

α′ = (k + 1)sα2 + ksβ2 + q, β′ = (2k + 1)sαβ.

For s > 0, the solutions are x-periodic with the period 2π/
√

s.

Example 3. Equation

ut = [exp (u)ux]x + s exp(u) + q exp (−u)

admits the CLBS

σ = [exp (u)]xx +
√

s tan
(√

sx
)
[exp (u)]x

for the case of s > 0 and

σ = [exp (u)]xx −
√
−s tanh

(√
−sx

)
[exp (u)]x

for the case of s < 0.

The corresponding separable solutions are respectively

u(x, t) = ln
[
α(t) + β(t) sin

(√
sx
)]
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and

u(x, t) = ln
[
α(t) + β(t) sinh

(√
−sx

)]
,

where α(t) and β(t) satisfy two-dimensional dynamical system

α′ = sα2 + q, β′ = sαβ.

α(t) and β(t) are listed as below.
(i) For qs > 0,

α(t) =
√

qs
s

tan [
√

qs(t + c1)], β(t) = c2 sec [
√

qs(t + c1)].

(ii) For qs < 0,

α(t) = −
√−qs

s
tanh

[√
−qs(t + c1)

]
, β(t) = c2sech

[√
−qs(t + c1)

]
.

(iii) For q = 0,

α(t) =
1

c1 − st
, β(t) =

c2

c1 − st
.

Example 4. Equation

ut =
(

u
s

2−s ux

)
x

admits the CLBS

σ =
(

u
s

2−s

)
xx
− s + 2

2x

(
u

s
2−s

)
x
+

s
x2 u

s
2−s .

The corresponding separable solutions are given as follows.
(i) For s = 4,

u(x, t) =

[
c2 +

1
2 ln (c1 − t)
c1 − t

x2 +
1

c1 − t
x2 ln x

]− 1
2

.

(ii) For s 6= 4,

u(x, t) =

 1
2(s−4)

s t + c1

x2 + c2

[
2(s− 4)

s
t + c1

] s(s−6)
8

x
s
2


2−s

s

.

Example 5. Equation

ut =
(

u−
4
3 ux

)
x

admits the CLBS

σ =
(

u−
4
3

)
xxx
− 6

x

(
u−

4
3

)
xx

+
18
x2

(
u−

4
3

)
x
− 24

x3 u−
4
3 .
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The corresponding solutions are given by

u(x, t) =

[
x2 + c2x3

c1 + t
+

(
c2

2
4(c1 + t)

+ c3(c1 + t)2

)
x4

]− 3
4

.

It is easy to see that the solutions have the asymptotical behavior u −→ 0 as x −→ ∞ and u −→ 0
as t −→ +∞.

Example 6. Equation

ut =
(

u−
4
3 ux

)
x
− 3

4
su−

1
3 − 3

4
qu

7
3

admits the CLBS

σ =
(

u−
4
3

)
xxx
− 3
√

s cot
(√

sx
) (

u−
4
3

)
xx

+ s
[
1 + 3 cot2 (√sx

)] (
u−

4
3

)
x

for s > 0 and the CLBS

σ =
(

u−
4
3

)
xxx
− 3
√
−s coth

(√
−sx

) (
u−

4
3

)
xx

+ s
[
1− 3 coth2

(√
−sx

)] (
u−

4
3

)
x

The corresponding solutions are given respectively as follows.
(i) For s > 0,

u(x, t) =
[
α(t) + β(t) cos

(√
sx
)
+ γ(t) cos

(
2
√

sx
)]− 3

4 .

(ii) For s < 0,

u(x, t) =
[
α(t) + β(t) cosh

(√
−sx

)
+ γ(t) cosh

(
2
√
−sx

)]− 3
4 .

The unknown functions in the solutions satisfy three-dimensional dynamical system

α′ = sα2 − 3
8

sβ2 − 3sγ2 + q,

β′ = sαβ− 3sβγ,

γ′ =
3
8

sβ2 − 2sαγ.

It is noted that the constant c1 can be removed from all the resulting solutions because Equation (7)
is invariant with respect to time translation. The exact solutions of Example 1 were found in [35]
for the first time and later rediscovered in [11]. The exact solutions presented in Example 3 are also
constructed due to conditional symmetry [36]. In addition, the exact solutions of Examples 2 and 3 are
both particular cases of those derived in [11,31]. The exact solutions listed in Example 5 are obtainable
from the dynamical system presented in [13].

4. Conclusions

We obtained the classification of the quasi-linear diffusion Equation (7) due to the CLBS method,
which provided a symmetry interpretation to the FGSV. The variant forms of (7) admitting the CLBS (6)
were presented. As a consequence, we constructed exact solutions in separable form (4) to the resulting
equations due to the corresponding symmetry reductions. Most of these solutions could not be
obtained by the other symmetry reduction methods.
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This method could also be used to consider other types of PDEs, including KdV-type equations,
fourth-order equations, etc. Moreover, it was also effective to deal with PDE systems, such as all
kinds of diffusion systems. In addition, the discussion of multi-dimensional evolution equations,
including all kinds of multi-dimensional diffusion equations in 2D, will be involved in our further
study.
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