# Fast Convergence Methods for Hyperbolic Systems of Balance Laws with Riemann Conditions

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Sinc-Approximation Formula

**Play-Wiener**class, denoted by $\mathbf{W}(\pi /h)$ which is the family of all analytic functions that are in $\mathbb{C}$, and satisfy some decaying conditions. For a function f and its derivative ${f}^{\prime}$ to be in the class $\mathbf{W}(\pi /h)$, the $kth$ derivative of the function f can be approximated by

## 3. The Sinc–Galerkin Method: Balance Laws

**Theorem**

**1**

**.**Let the matrix U be as defined in (15). Then for the number of points in both space and time ${N}_{x},{N}_{t}$ to be bigger than some constant that depends on $d,\alpha $, we have

**Theorem**

**2**

**.**For any positive constant R, we can find another positive constant ${T}_{0}$ so that whenever $\parallel {U}_{1}-{U}_{0}\parallel <\frac{R}{2}$, then the solution of (15) is unique. Also, the iteration system

**Definition**

**1.**

**Theorem**

**3.**

**Proof.**

#### Treatment of Non-Zero Boundary Conditions

## 4. The Adomian Decomposition Method (ADM)

#### Convergence of the ADM Approximation

**Definition**

**2.**

## 5. Applications: Riemann Type

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Pirkhedri, A.; Javdi, H.H.S.; Navidi, H.R. Numerical algorithm based on Haar-Sinc collocation method for solving the hyperbolic PDEs. Sci. World J.
**2014**, 2014, 340752. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kalisch, H.; Mitrovic, D.; Teyekpiti, V. Existence and uniqueness of singular solutions for a conservation law arising in magnetohydrodynamics. Nonlinearity
**2018**, 31, 5463–5483. [Google Scholar] [CrossRef] - Fitt, A.D. The numerical and analytical systems of conservation laws. Appl. Math. Model.
**1989**, 13, 618–631. [Google Scholar] [CrossRef] - Az-Zo’bi, E.A. Construction of solutions for mixed hyperbolic elliptic Riemann initial value system of conservation laws. Appl. Math. Model.
**2013**, 37, 6018–6024. [Google Scholar] [CrossRef] - Sod, G.A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys.
**1978**, 27, 1–31. [Google Scholar] [CrossRef] [Green Version] - Rashidinia, J.; Barati, A. Numerical solutions of one-dimensional non-linear parabolic equation using Sinc collocation method. Ain Shams Eng. J.
**2015**, 6, 381–389. [Google Scholar] [CrossRef] [Green Version] - Al-Khaled, K.; Allan, F. Decomposition method for solving nonlinear integro-differential equations. J. Appl. Math. Comput.
**2005**, 19, 415. [Google Scholar] [CrossRef] - Al-Khaled, K. Cardinal-type approximations for conservation laws of mixed type. Nonlinear Stud.
**2014**, 21, 423–433. [Google Scholar] - Alquran, M.; Ali, M.; Al-Khaled, K. Solitary wave solutions to shallow water waves arising in fluid dynamics. Nonlinear Stud.
**2012**, 19, 555–562. [Google Scholar] - Al-Khaled, K. Numerical solutions of time-fractional partial differential equation using Sumudu decomposition method. Rom. J. Phys.
**2015**, 60, 99–110. [Google Scholar] - Az-Zo’bi, E.A.; Al-Khaled, K. A new convergence proof of the Adomian decomposition method for a mixed hyperbolic elliptic system of conservation laws. Appl. Math. Comput.
**2010**, 217, 4248–4256. [Google Scholar] [CrossRef] - Fjordholm, U.S.; Lye, K.; Mishra, S.; Weber, F. Statistical solutions of hyperbolic systems of conservation laws: Numerical approximation. arXiv
**2019**, arXiv:1906.02536. [Google Scholar] [CrossRef] [Green Version] - Hussain, A.; Bano, S.; Khan, I.; Baleanu, D.; Sooppy Nisar, K. Lie Symmetry Analysis, Explicit Solutions and Conservation Laws of a Spatially Two-Dimensional Burgers-Huxley Equation. Symmetry
**2020**, 12, 170. [Google Scholar] [CrossRef] [Green Version] - Randall, J.L. Numerical Methods for Conservation Laws, Lectures in Mathematics, 2nd ed.; ETH Zürich: Zürich, Switzerland; Birkhäuser: Basel, Switzerland, 1992. [Google Scholar]
- Stenger, F. Numerical Methods Based on Sinc and Analytical Functions; Springer: New York, NY, USA, 1993. [Google Scholar]
- Al-Khaled, K. Theory and Computation in Hyperbolic Model Problems. Ph.D Thesis, University of Nebraska, Lincoln, NE, USA, 1996. [Google Scholar]
- Lund, J.; Rowers, K.L. Sinc Methods for Quadrature and Differential Equations; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
- Al-Khaled, K. Kamel Al-Khaled; A Sinc-Galerkin approach to the p-system. Saitama Math. J.
**1998**, 16, 1–13. [Google Scholar] - Adomian, G. A review of the decomposition method in applied Mathematics. J. Math. Anal. Appl.
**1988**, 135, 501–544. [Google Scholar] [CrossRef] [Green Version] - Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer: Boston, UK, 1994. [Google Scholar]
- Cherrualt, Y.; Adomian, G. Decomposition methods: A new proof of convergence. Math. Comput. Model.
**1993**, 18, 103–106. [Google Scholar] [CrossRef] - Alquran, M.T.; Al-Khaled, K.M. Numerical Comparison of Methods for Solving Systems of Conservation Laws of Mixed Type. Int. J. Math. Anal.
**2011**, 5, 35–47. [Google Scholar] - El-Sayed, A.M.A.; Hashem, H.H.G.; Ziada, E.A.A. Picard and Adomian decomposition methods for a quadratic integral equation of fractional order. Comput. Appl. Math.
**2014**, 33, 95–109. [Google Scholar] [CrossRef] - Rach, R. On the Adomian (decomposition) method and comparisons with Picard’s method. J. Math. Anal. Appl.
**1987**, 128, 480–483. [Google Scholar] [CrossRef] [Green Version] - Holden, H.; Holden, L.; Risebro, N.H. Some qualitative properties of 2 × 2 systems of conservation laws of mixed type. In Nonlinear Evolution Equations That Change Type; Springer: New York, NY, USA, 1990. [Google Scholar]

${\mathit{N}}_{\mathit{x}}={\mathit{N}}_{\mathit{t}}$ | ${\Vert \mathit{u}\Vert}_{\mathbf{\infty}}$ | ${\Vert \mathit{v}\Vert}_{\mathbf{\infty}}$ |
---|---|---|

4 | $8.5450\times {10}^{-03}$ | $4.1314\times {10}^{-02}$ |

8 | $5.7183\times {10}^{-03}$ | $1.6575\times {10}^{-02}$ |

16 | $1.3617\times {10}^{-03}$ | $3.5789\times {10}^{-03}$ |

32 | $8.8632\times {10}^{-05}$ | $2.4625\times {10}^{-04}$ |

64 | $5.3823\times {10}^{-06}$ | $9.6498\times {10}^{-05}$ |

Iteration No. | $\mathit{u}(\mathit{x},\mathit{t})$ | $\mathit{v}(\mathit{x},\mathit{t})$ |
---|---|---|

First | $0.999753$ | $0.289434$ |

Second | $0.937269$ | $0.284561$ |

Third | $0.941174$ | $0.281119$ |

Fourth | $0.904930$ | $0.273621$ |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Al-Khaled, K.; Rababah, N.M.
Fast Convergence Methods for Hyperbolic Systems of Balance Laws with Riemann Conditions. *Symmetry* **2020**, *12*, 757.
https://doi.org/10.3390/sym12050757

**AMA Style**

Al-Khaled K, Rababah NM.
Fast Convergence Methods for Hyperbolic Systems of Balance Laws with Riemann Conditions. *Symmetry*. 2020; 12(5):757.
https://doi.org/10.3390/sym12050757

**Chicago/Turabian Style**

Al-Khaled, Kamel, and Nid’a M. Rababah.
2020. "Fast Convergence Methods for Hyperbolic Systems of Balance Laws with Riemann Conditions" *Symmetry* 12, no. 5: 757.
https://doi.org/10.3390/sym12050757