Quintessential Inflation with Dynamical Higgs Generation as an Affine Gravity
Abstract
:1. Introduction
2. The Essence of the Non-Riemannian Volume-Form Formalism
3. Quintessential Inflationary Model with Dynamical Higgs Effect
- The scalar curvature is given in terms of the Ricci tensor in the first-order (Palatini) formalism:
- The non-Riemannian volume-element densities are defined as in (6):
- is a neutral scalar “inflaton” and is a complex iso-doublet Higgs-like scalar field with the isospinor index indicating the corresponding charge. The corresponding kinetic energy terms in (9) read:
- and are dimensionful coupling constants in the “inflaton” potential. The is a small dimensional constant which will be identified in the sequel with the “late” universe cosmological constant in the dark energy dominated accelerated expansion’s epoch.
- (a) (−) flat “inflaton” region for large negative values of (and is finite) corresponding to the “slow-roll” inflationary evolution of the “early” universe driven by . Here the effective potential (26) reduces to (an almost) constant value independent of the finite value of —this is energy scale of the inflationary epoch:Thus, in the “early” universe the Higgs-like field must be (approximately) either massless or constant with no non-zero vacuum expectation value, therefore there is no spontaneous breaking of symmetry. Moreover, in fact as shown in the Remark below, does not participate in the “slow-roll” inflationary evolution, so stays constant there equal to the “false”vacuum value .
- (b) (+) flat “inflaton” region for large positive values of (and —finite) corresponding to the evolution of the post-inflationary (“late”) universe, where:
- Thus, the residual cosmological constant in (28) has to be identified with the current epoch observable cosmological constant () and, therefore, according to (27) the integration constants are naturally identified by orders of magnitude as
- Here the order of magnitude for is determined from the mass term of the Higgs-like field in the flat region resulting from (28) upon expansion around the Higgs vacuum ():
- Let us specifically note that the viability of the present model (in a slightly simplified form without the Higgs scalar) concerning confrontation with the observational data has already been analyzed and confirmed numerically in Reference [141]. In particular, a graphical plot of the evolution of r (tensor-to-scalar ratio) vs. (scalar spectral index) has been provided there.
4. Eddinton-Type No-Metric Gravity and Quintessential Inflation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. 1981, D23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Starobinsky, A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 1979, 30, 682–685. [Google Scholar]
- Kazanas, D. Dynamics of the Universe and Spontaneous Symmetry Breaking. Astrophys. J. 1980, 241, L59–L63. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. 1980, 91B, 99–102. [Google Scholar] [CrossRef]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. 1982, 108B, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Barrow, J.D.; Ottewill, A.C. The Stability of General Relativistic Cosmological Theory. J. Phys. 1983, A16, 2757. [Google Scholar] [CrossRef]
- Blau, S.K.; Guendelman, E.I.; Guth, A.H. The Dynamics of False Vacuum Bubbles. Phys. Rev. 1987, D35, 1747. [Google Scholar] [CrossRef] [Green Version]
- Kolb, E.; Turner, M. The Early Universe; Addison Wesley: Boston, MA, USA, 1990. [Google Scholar]
- Linde, A. Particle Physics and Inflationary Cosmology; Harwood: Chur, Switzerland, 1990. [Google Scholar]
- Guth, A. The Inflationary Universe; Vintage, Random House: New York, NJ, USA, 1998. [Google Scholar]
- Liddle, A.; Lyth, D. Cosmological Inflation and Large-Scale Structure; Cambridge Univ. Press: Cambridge, UK, 2000. [Google Scholar]
- Dodelson, S. Modern Cosmology; Acad. Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Weinberg, S. Cosmology; Oxford Univ. Press: Oxford, UK, 2008. [Google Scholar]
- Mukhanov, V. Physical Foundations of Cosmology; Cambride Univ. Press: Cambridge, UK, 2005. [Google Scholar]
- Liddle, A.; Lyth, D. The Primordial Density Perturbations—Cosmology, Inflation and Origin of Structure; Cambridge Univ. Press: Cambridge, UK, 2009. [Google Scholar]
- Lyth, D. Cosmology for Physicists; CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Calcagni, G. Classical and Quantum Cosmology; Springer: Berlin, Germany, 2017. [Google Scholar]
- Gorbunov, D.; Rubakov, V. Introduction to the Theory of the Early Universe. Hot Big Bang Theory, 2nd ed.; World Scientific: Singapore, 2018. [Google Scholar]
- Piattella, O. Lecture Notes in Cosmology; Springer: Berlin, Germany, 2018. [Google Scholar]
- Benisty, D.; Guendelman, E.I. Inflation compactification from dynamical spacetime. Phys. Rev. 2018, D98, 043522. [Google Scholar] [CrossRef] [Green Version]
- Liddle, A.R.; Lyth, D.H. COBE, gravitational waves, inflation and extended inflation. Phys. Lett. 1992, B291, 391–398. [Google Scholar] [CrossRef]
- Liddle, A.R.; Lyth, D.H. The Cold dark matter density perturbation. Phys. Rept. 1993, 231, 1–105. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.I.; Saridakis, E.N. The Scale Factor Potential Approach to Inflation. arXiv 2019, arXiv:gr-qc/1909.01982. [Google Scholar]
- Riess, A.G. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 2004, 607, 665–687. [Google Scholar] [CrossRef] [Green Version]
- Saridakis, E.N.; Bamba, K.; Myrzakulov, R.; Anagnostopoulos, F.K. Holographic dark energy through Tsallis entropy. JCAP 2018, 1812, 12. [Google Scholar] [CrossRef] [Green Version]
- Vasak, D.; Kirsch, J.; Struckmeier, J. Dark energy and inflation invoked in CCGG by locally contorted space-time. arXiv 2019, arXiv:gr-qc/1910.01088. [Google Scholar]
- Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. Non-minimal dark sector physics and cosmological tensions. Phys. Rev. 2020, D101, 063502. [Google Scholar] [CrossRef] [Green Version]
- Perez, A.; Sudarsky, D.; Wilson-Ewing, E. Resolving the H0 tension with diffusion. arXiv 2020, arXiv:astro-ph.CO/2001.07536. [Google Scholar]
- Anagnostopoulos, F.K.; Basilakos, S. Constraining the dark energy models with H(z) data: An approach independent of H0. Phys. Rev. 2018, D97, 063503. [Google Scholar] [CrossRef] [Green Version]
- Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H. Canonical Transformation Path to Gauge Theories of Gravity. Phys. Rev. 2017, D95, 124048. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E.; Vilenkin, A. Quintessential inflation. Phys. Rev. 1999, D59, 063505. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. 2003, D68, 123512. [Google Scholar] [CrossRef] [Green Version]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. A Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. 2008, D77, 046009. [Google Scholar] [CrossRef] [Green Version]
- De Laurentis, M.; Paolella, M.; Capozziello, S. Cosmological inflation in F(R,G) gravity. Phys. Rev. 2015, D91, 083531. [Google Scholar] [CrossRef] [Green Version]
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically driven quintessence. Phys. Rev. 2000, D62, 023511. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys. Rev. Lett. 2000, 85, 4438–4441. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. Essentials of k essence. Phys. Rev. 2001, D63, 103510. [Google Scholar] [CrossRef]
- Chiba, T. Tracking K-essence. Phys. Rev. 2002, D66, 063514. [Google Scholar] [CrossRef]
- Saitou, R.; Nojiri, S. The unification of inflation and late-time acceleration in the frame of k-essence. Eur. Phys. J. 2011, C71, 1712. [Google Scholar] [CrossRef]
- Wetterich, C. Variable gravity Universe. Phys. Rev. 2014, D89, 024005. [Google Scholar] [CrossRef] [Green Version]
- Bueno Sanchez, J.C.; Dimopoulos, K. Trapped quintessential inflation in the context of flux compactifications. JCAP 2007, 710, 2. [Google Scholar] [CrossRef] [Green Version]
- Bueno Sanchez, J.C.; Dimopoulos, K. Trapped Quintessential Inflation. Phys. Lett. 2006, B642, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, K.; Valle, J.W.F. Modeling quintessential inflation. Astropart. Phys. 2002, 18, 287–306. [Google Scholar] [CrossRef] [Green Version]
- Bezrukov, F.L.; Shaposhnikov, M. The Standard Model Higgs boson as the inflaton. Phys. Lett. 2008, B659, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S.; Chakraborty, T.; Pal, S. Higgs inflation from new Kähler potential. Nucl. Phys. 2014, B880, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, K.; Donaldson Wood, L.; Owen, C. Instant preheating in quintessential inflation with α-attractors. Phys. Rev. 2018, D97, 063525. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, K.; Owen, C. Quintessential Inflation with α-attractors. JCAP 2017, 1706, 027. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S. COSMOS-e′- soft Higgsotic attractors. Eur. Phys. J. 2017, C77, 469. [Google Scholar] [CrossRef] [Green Version]
- Gundhi, A.; Steinwachs, C.F. Scalaron-Higgs inflation. Nucl. Phys. 2020, B954, 114989. [Google Scholar] [CrossRef]
- Ema, Y. Dynamical Emergence of Scalaron in Higgs Inflation. JCAP 2019, 1909, 27. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Variable gravity: A suitable framework for quintessential inflation. Phys. Rev. 2014, D90, 023512. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Class of quintessential inflation models with parameter space consistent with BICEP2. Phys. Rev. 2014, D89, 123513. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Evading Lyth bound in models of quintessential inflation. Phys. Lett. 2014, B737, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Wali Hossain, M.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Unification of inflation and dark energy à la quintessential inflation. Int. J. Mod. Phys. 2015, D24, 1530014. [Google Scholar] [CrossRef]
- Geng, C.Q.; Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Quintessential inflation with canonical and noncanonical scalar fields and Planck 2015 results. Phys. Rev. 2015, D92, 023522. [Google Scholar] [CrossRef] [Green Version]
- Geng, C.Q.; Lee, C.C.; Sami, M.; Saridakis, E.N.; Starobinsky, A.A. Observational constraints on successful model of quintessential Inflation. JCAP 2017, 1706, 11. [Google Scholar] [CrossRef] [Green Version]
- Kleidis, K.; Oikonomou, V. A Study of an Einstein Gauss-Bonnet Quintessential Inflationary Model. Nucl. Phys. B 2019, 948, 114765. [Google Scholar] [CrossRef]
- Dimopoulos, K.; Donaldson-Wood, L. Warm quintessential inflation. Phys. Lett. 2019, B796, 26–31. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. 2006, D15, 1753–1936. [Google Scholar] [CrossRef] [Green Version]
- Novikov, E.A. Quantum Modification of General Relativity. Electron. J. Theor. Phys. 2016, 13, 79–90. [Google Scholar]
- Benitez, F.; Gambini, R.; Lehner, L.; Liebling, S.; Pullin, J. Critical collapse of a scalar field in semiclassical loop quantum gravity. arXiv 2020, arXiv:gr-qc/2002.04044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budge, L.; Campbell, J.M.; De Laurentis, G.; Keith Ellis, R.; Seth, S. The one-loop amplitude for Higgs + 4 gluons with full mass effects. arXiv 2020, arXiv:hep-ph/2002.04018. [Google Scholar]
- Bell, G.; Beneke, M.; Huber, T.; Li, X.Q. Two-loop non-leptonic penguin amplitude in QCD factorization. arXiv 2020, arXiv:hep-ph/2002.03262. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, J.; Knowles, A.; Schlein, B.; Sohinger, V. A path-integral analysis of interacting Bose gases and loop gases. arXiv 2020, arXiv:math-ph/2001.11714. [Google Scholar]
- D’Ambrosio, F. Semi-Classical Holomorphic Transition Amplitudes in Covariant Loop Quantum Gravity. Ph.D. Thesis, Center for Theoretical Physics, Aix-Marseille University, Marseille, France, 2020. [Google Scholar]
- Novikov, E.A. Ultralight gravitons with tiny electric dipole moment are seeping from the vacuum. Mod. Phys. Lett. 2016, A31, 1650092. [Google Scholar] [CrossRef] [Green Version]
- Dekens, W.; Stoffer, P. Low-energy effective field theory below the electroweak scale: matching at one loop. JHEP 2019, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.T.; Pezzella, F. Stringy Effects at Low-Energy Limit and Double Field Theory. arXiv 2019, arXiv:hep-th/1909.00411. [Google Scholar]
- Jenkins, E.E.; Manohar, A.V.; Stoffer, P. Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching. JHEP 2018, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Brandyshev, P.E. Cosmological solutions in low-energy effective field theory for type IIA superstrings. Grav. Cosmol. 2017, 23, 15–19. [Google Scholar] [CrossRef]
- Gomez, C.; Jimenez, R. Cosmology from Quantum Information. arXiv 2020, arXiv:hep-th/2002.04294. [Google Scholar]
- Faraoni, V.; Capozziello, S. Beyond Einstein Gravity; Springer: Dordrecht, The Netherlands, 2011; Volume 170. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijevic, I.; Dragovich, B.; Koshelev, A.S.; Rakic, Z.; Stankovic, J. Cosmological Solutions of a Nonlocal Square Root Gravity. Phys. Lett. 2019, B797, 134848. [Google Scholar] [CrossRef]
- Bilic, N.; Dimitrijevic, D.D.; Djordjevic, G.S.; Milosevic, M.; Stojanovic, M. Tachyon inflation in the holographic braneworld. JCAP 2019, 1908, 34. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Oikonomou, V.K. Geometric Inflation and Dark Energy with Axion F(R) Gravity. Phys. Rev. 2020, D101, 44009. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.I.; Kaganovich, A.B. The Principle of nongravitating vacuum energy and some of its consequences. Phys. Rev. 1996, D53, 7020–7025. [Google Scholar] [CrossRef] [Green Version]
- Gronwald, F.; Muench, U.; Macias, A.; Hehl, F.W. Volume elements of space-time and a quartet of scalar fields. Phys. Rev. 1998, D58, 084021. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.I. Scale invariance, new inflation and decaying lambda terms. Mod. Phys. Lett. 1999, A14, 1043–1052. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.I.; Kaganovich, A.B. Dynamical measure and field theory models free of the cosmological constant problem. Phys. Rev. 1999, D60, 065004. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.I.; Kaganovich, A.B. Absence of the Fifth Force Problem in a Model with Spontaneously Broken Dilatation Symmetry. Ann. Phys. 2008, 323, 866–882. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.; Nissimov, E.; Pacheva, S.; Vasihoun, M. A New Mechanism of Dynamical Spontaneous Breaking of Supersymmetry. Bulg. J. Phys. 2014, 41, 123–129. [Google Scholar]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Vacuum structure and gravitational bags produced by metric-independent space–time volume-form dynamics. Int. J. Mod. Phys. 2015, A30, 1550133. [Google Scholar] [CrossRef]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Dark Energy and Dark Matter From Hidden Symmetry of Gravity Model with a Non-Riemannian Volume Form. Eur. Phys. J. 2015, C75, 472. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Unified Dark Energy and Dust Dark Matter Dual to Quadratic Purely Kinetic K-Essence. Eur. Phys. J. 2016, C76, 90. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Gravity-Assisted Emergent Higgs Mechanism in the Post-Inflationary Epoch; honorable mention in 2016 Gravity Research Foundation Competition for Essays on Gravitation. Int. J. Mod. Phys. 2016, D25, 1644008. [Google Scholar] [CrossRef]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Wheeler–DeWitt Quantization of Gravity Models of Unified Dark Energy and Dark Matter. Springer Proc. Math. Stat. 2017, 255, 99–113. [Google Scholar] [CrossRef]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Modified Gravity and Inflaton Assisted Dynamical Generation of Charge Confinement and Electroweak Symmetry Breaking in Cosmology. AIP Conf. Proc. 2019, 2075, 090030. [Google Scholar] [CrossRef]
- Weinberg, S. Quantum Theory of Fields. Volume 2—Modern Applications; Cambridge Univ. Press: Cambridge, UK, 1996. [Google Scholar]
- Kane, G. Modern Elementary Particle Physics. Explaining and Extending the Standard Model; Cambridge Univ. Press: Cambridge, UK, 2017. [Google Scholar]
- Bekenstein, J.D. Gravitation and Spontaneous Symmetry Breaking. Found. Phys. 1986, 16, 409–422. [Google Scholar] [CrossRef]
- Rubio, J. Higgs inflation. Front. Astron. Space Sci. 2019, 5, 50. [Google Scholar] [CrossRef]
- Antoniadis, I.; Lykkas, A.; Tamvakis, K. Constant-roll in the Palatini-R2 models. arXiv 2020, arXiv:gr-qc/2002.12681. [Google Scholar] [CrossRef] [Green Version]
- Ouseph, C.J.; Cheung, K. Higgs Inflation With Four-form Couplings. arXiv 2020, arXiv:hep-ph/2002.12010. [Google Scholar]
- Ema, Y.; Mukaida, K.; van de Vis, J. Higgs Inflation as Nonlinear Sigma Model and Scalaron as its σ-meson. arXiv 2020, arXiv:hep-ph/2002.11739. [Google Scholar]
- Torabian, M. Electroweak vacuum stability and the Higgs field relaxation via gravitational effects. Class. Quant. Grav. 2020, 37, 65009. [Google Scholar] [CrossRef]
- Adshead, P.; Pearce, L.; Shelton, J.; Weiner, Z.J. Stochastic evolution of scalar fields with continuous symmetries during inflation. arXiv 2020, arXiv:hep-ph/2002.07201. [Google Scholar]
- Okada, N.; Raut, D.; Shafi, Q. SMART U(1)X- Standard Model with Axion, Right handed neutrinos, Two Higgs doublets and U(1)X gauge symmetry. arXiv 2020, arXiv:hep-ph/2002.07110. [Google Scholar]
- Shaposhnikov, M.; Shkerin, A.; Zell, S. Quantum Effects in Palatini Higgs Inflation. arXiv 2020, arXiv:hep-ph/2002.07105. [Google Scholar]
- Tenkanen, T.; Tomberg, E. Initial conditions for plateau inflation. arXiv 2020, arXiv:astro-ph.CO/2002.02420. [Google Scholar]
- Shaposhnikov, M.; Shkerin, A.; Zell, S. Standard Model Meets Gravity: Electroweak Symmetry Breaking and Inflation. arXiv 2020, arXiv:hep-th/2001.09088. [Google Scholar]
- Barrie, N.D.; Sugamoto, A.; Takeuchi, T.; Yamashita, K. Higgs Inflation, Vacuum Stability, and Leptogenesis. arXiv 2020, arXiv:hep-ph/2001.07032. [Google Scholar]
- Sato, S.; Maeda, K.I. Stability of Hybrid Higgs Inflation. arXiv 2020, arXiv:gr-qc/2001.00154. [Google Scholar]
- Passaglia, S.; Hu, W.; Motohashi, H. Primordial Black Holes as Dark Matter through Higgs Criticality. arXiv 2019, arXiv:astro-ph.CO/1912.02682. [Google Scholar]
- Mishra, S.S.; Müller, D.; Toporensky, A.V. On generality of Starobinsky and Higgs inflation in the Jordan frame. arXiv 2019, arXiv:gr-qc/1912.01654. [Google Scholar]
- Gialamas, I.D.; Lahanas, A.B. Reheating in R2 Palatini inflationary models. arXiv 2019, arXiv:gr-qc/1911.11513. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D. Inflation from Fermions. arXiv 2019, arXiv:gr-qc/1912.11124. [Google Scholar]
- Einstein, A. Sitzungber. Preuss. Akad. Wiss. 23; Berlin-Brandenburgische Akademie der Wissenschaften: Berlin, Germany, 1923. [Google Scholar]
- Einstein, A. Sitzungber. Preuss. Akad. Wiss. 137; Berlin-Brandenburgische Akademie der Wissenschaften: Berlin, Germany, 1923. [Google Scholar]
- Eddington, A. The Mathematical Theory of Relativity; Univ. Press: Cambridge, UK, 1924. [Google Scholar]
- Schrödinger, E. Space-Time Structure; Cambridge Univ. Press: Cambridge, UK, 1950. [Google Scholar]
- Kijowski, J. Gravitation and spontaneous symmetry breaking. Gen. Rel. Grav. 1987, 9, 857. [Google Scholar] [CrossRef]
- Ferraris, M.; Kijowski, J. On the Equivalence of the Relativistic Theories of Gravitation. Gen. Rel. Grav. 1982, 14, 165–180. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef] [Green Version]
- Poplawski, N. Affine theory of gravitation. Gen. Rel. Grav. 2014, 46, 1625. [Google Scholar] [CrossRef] [Green Version]
- Bejarano, C.; Delhom, A.; Jiménez-Cano, A.; Olmo, G.J.; Rubiera-Garcia, D. Geometric inequivalence of metric and Palatini formulations of General Relativity. Phys. Lett. 2020, B802, 135275. [Google Scholar] [CrossRef]
- Delhom, A.; Olmo, G.J.; Orazi, E. Ricci-Based Gravity theories and their impact on Maxwell and nonlinear electromagnetic models. JHEP 2019, 11, 149. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, J.R.; Olmo, G.J.; Porfírio, P.J.; Petrov, A.Y.; Soares, A.R. Nonlinear σ-models in the Eddington-inspired Born-Infeld Gravity. arXiv 2019, arXiv:hep-th/1912.10779. [Google Scholar] [CrossRef] [Green Version]
- Delhom, A.; Macedo, C.F.B.; Olmo, G.J.; Crispino, L.C.B. Absorption by black hole remnants in metric-affine gravity. Phys. Rev. 2019, D100, 24016. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. Minimum main sequence mass in quadratic Palatini f(R) gravity. Phys. Rev. 2019, D100, 44020. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. Coupling matter in modified Q gravity. Phys. Rev. 2018, D98, 84043. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D. Geons in Palatini Theories of Gravity. Fundam. Theor. Phys. 2017, 189, 161–190. [Google Scholar] [CrossRef]
- Wojnar, A. Polytropic stars in Palatini gravity. Eur. Phys. J. 2019, C79, 51. [Google Scholar] [CrossRef] [Green Version]
- Afonso, V.I.; Olmo, G.J.; Rubiera-Garcia, D. Scalar geons in Born-Infeld gravity. JCAP 2017, 1708, 31. [Google Scholar] [CrossRef] [Green Version]
- Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. Born–Infeld inspired modifications of gravity. Phys. Rep. 2018, 727, 1–129. [Google Scholar] [CrossRef] [Green Version]
- Casana, R.; da Hora, E.; Rubiera-Garcia, D.; dos Santos, C. Topological vortices in generalized Born–Infeld–Higgs electrodynamics. Eur. Phys. J. 2015, C75, 380. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Olmo, G.J.; Rubiera-Garcia, D. Born-Infeld gravity and its functional extensions. Phys. Rev. 2014, D90, 44003. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.I. Correspondence between the first and second order formalism by a metricity constraint. Phys. Rev. 2018, D98, 44023. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.I.; Vasak, D.; Struckmeier, J.; Stoecker, H. Quadratic curvature theories formulated as Covariant Canonical Gauge theories of Gravity. Phys. Rev. 2018, D98, 106021. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.I.; Struckmeier, J. Gauge theory of Gravity based on the correspondence between the 1st and the 2nd order formalisms. arXiv 2018, arXiv:hep-th/1808.01978. [Google Scholar]
- Azri, H.; Nasri, S. Entropy Production in Affine Inflation. arXiv 2019, arXiv:gr-qc/1911.11495. [Google Scholar] [CrossRef] [Green Version]
- Spivak, M. Calculus on Manifolds—A Modern Approach to Classical Theorems of Advanced Calculus; CRC Press: Boca Raton, FL, USA, 2018; Chapter 5; p. 126. [Google Scholar]
- Lim, E.A.; Sawicki, I.; Vikman, A. Dust of Dark Energy. JCAP 2010, 1005, 12. [Google Scholar] [CrossRef] [Green Version]
- Henneaux, M.; Teitelboim, C. Quantization of Gauge Systems; Princeton Univ. Press: Princeton, NJ, USA, 1991. [Google Scholar]
- Rothe, H.J.; Rothe, K.D. Classical and Quantum Dynamics of Constrained Hamiltonian Systems; World Scientific: Singapore, 2010. [Google Scholar]
- Benisty, D.; Guendelman, E.; Nissimov, E.; Pacheva, S. Dynamically Generated Inflation from Non-Riemannian Volume Forms. Eur. Phys. J. 2019, C79, 806. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.I.; Nissimov, E.; Pacheva, S. Dynamically generated inflationary two-field potential via non-Riemannian volume forms. Nucl. Phys. 2020, B951, 114907. [Google Scholar] [CrossRef]
- Guendelman, E.; Herrera, R.; Labrana, P.; Nissimov, E.; Pacheva, S. Emergent Cosmology, Inflation and Dark Energy. Gen. Rel. Grav. 2015, 47, 10. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R. Planck 2013 results. XXII. Constraints on inflation. Astron. Astrophys. 2014, 571, A22. [Google Scholar] [CrossRef] [Green Version]
- Adam, R. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes. Astron. Astrophys. 2016, 586, A133. [Google Scholar] [CrossRef] [Green Version]
- Azri, H. Are there really conformal frames? Uniqueness of affine inflation. Int. J. Mod. Phys. 2018, D27, 1830006. [Google Scholar] [CrossRef] [Green Version]
- Kijowski, J.; Werpachowski, R. Universality of affine formulation in general relativity theory. Rep. Math. Phys. 2007, 59, 1. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benisty, D.; Guendelman, E.I.; Nissimov, E.; Pacheva, S. Quintessential Inflation with Dynamical Higgs Generation as an Affine Gravity. Symmetry 2020, 12, 734. https://doi.org/10.3390/sym12050734
Benisty D, Guendelman EI, Nissimov E, Pacheva S. Quintessential Inflation with Dynamical Higgs Generation as an Affine Gravity. Symmetry. 2020; 12(5):734. https://doi.org/10.3390/sym12050734
Chicago/Turabian StyleBenisty, David, Eduardo I. Guendelman, Emil Nissimov, and Svetlana Pacheva. 2020. "Quintessential Inflation with Dynamical Higgs Generation as an Affine Gravity" Symmetry 12, no. 5: 734. https://doi.org/10.3390/sym12050734
APA StyleBenisty, D., Guendelman, E. I., Nissimov, E., & Pacheva, S. (2020). Quintessential Inflation with Dynamical Higgs Generation as an Affine Gravity. Symmetry, 12(5), 734. https://doi.org/10.3390/sym12050734