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Abstract: Symmetries at finite temperature are of great importance to understand dynamics
of spontaneous symmetry breaking phenomena, especially phase transitions in early Universe.
Some symmetries such as the electroweak symmetry can be restored in hot environment.
However, it is a nontrivial question that the phase transition occurs via first or second order, or even
smooth crossover, which strongly depends on underlying physics. If it is first order, gravitational
waves can be generated, providing a detectable signal of this epoch. Moreover, the baryon asymmetry
of the Universe can also arise under some conditions. In this article, the electroweak phase transition
is reviewed, focusing particularly on the case of the first-order phase transition. Much attention is
paid to multi-step phase transitions in which additional symmetry breaking such as a spontaneous
Z2 breaking plays a pivotal role in broadening the possibility of the first-order electroweak phase
transition. On the technical side, we review thermal resummation that mitigates a bad infrared
behavior related to the symmetry restoration. In addition, gauge and scheme dependences of
perturbative calculations are also briefly discussed.

Keywords: symmetry restoration and breaking; electroweak phase transition; thermal resummation

1. Introduction

Symmetry and its breaking are key concepts in particle physics and cosmology. The former
provides foundation of underlying theories while the latter is often indispensable to describes
diversity in nature. Those two conflicting notions are well accommodated in the framework of
spontaneous symmetry breaking (SSB), i.e., symmetry is respected by action but broken by vacuum.
In this phenomenon, dynamical evolution of the vacuum is of great importance, and in a hot
environment the symmetry can be fully restored [1–5].

One of the most intriguing SSB in cosmology is phase transitions at early Universe such as the
quantum chromodynamics (QCD) transition and electroweak phase transition (EWPT). Much attention
has been given to the latter since the baryon asymmetry of the Universe (BAU) [6], which cannot
be realized in the standard model (SM) of particle physics, could arise if EWPT is first order
with expanding bubble walls (referred to as electroweak baryogenesis (EWBG) [7], for reviews,
see Refs. [8–16]). Moreover, in such a case, gravitational waves can be produced by bubble collisions,
turbulence and sound waves, which could be probed by near future experiments such as LISA and
DECIGO (for detailed discussion, see, e.g., Ref. [17]). From this point of view, the investigation of the
first-order phase transitions, especially EWPT is not only important but urgent in terms of the timeline.

EWPT can be first-order once the SM is extended, for instance, real scalar extensions [18–58],
complex scalar extensions [59–69], Higgs doublet extensions [70–88], and supersymmetric
extensions [89–107]. As first stressed in Ref. [97], additional symmetry breaking prior to EWPT
can broaden the possibility of the first-order EWPT. In the paper, various multi-step phase transitions
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are classified in the next-to-minimal supersymmetric SM, and it is shown that a global U(1) breaking
induced by a gauge singlet scalar preceding EWPT can help to achieve the first-order EWPT.
Currently, this mechanism is widely applied to a plethora of models beyond the SM. One of the
simplest models is a real scalar extension of the SM with a Z2 symmetry. The most attractive 2-step
phase transition scenario is that the broken Z2 symmetry by the first step transition is restored
by the second step transition, accommodating both the first-order EWPT and dark matter (DM)
candidate simultaneously.

On the technical side in perturbation theories, one is faced with some thorny problems, such as
thermal resummation and gauge dependences. It is widely studied that the symmetry restoration
brings about infrared divergences that spoil the validity of perturbative expansion at high temperature
even though couplings in theories are sufficiently small [3,108]. A standard prescription is called
thermal resummation in which perturbative expansion is re-organized in such a way that dominant
temperature corrections are summed over and absorbed into zeroth-order terms. In addition to this
problem, ordinary perturbative calculations of EWPT are plagued by a gauge dependence problem,
which is attributed to the gauge-dependent order parameter, viz, the Higgs vacuum expectation value
(VEV). Thus, obtained results such as a critical temperature and strength of the first-order phase
transition suffer from the gauge dependence.

In this article, we give some basics for analysis of the thermal phase transitions including thermal
resummation in a pedagogical way. Great emphasis is put on EWPT, focusing on multi-step types that
pave the way for first-order phase transition as mentioned above. We also cover a recently proposed
gauge-invariant treatment of EWPT based on Nielsen-Fukuda-Kugo (NFK) identity [109,110] and its
comparisons with gauge-dependent results. Scheme dependences of various calculations are also
discussed based on Ref. [56].

The article is organized as follows. In Section 2, we start by giving a finite-temperature effective
potential and demonstrate the symmetry restoration in the φ4 theory. In Section 3, after showing
the breakdown of the perturbative expansion at high temperature in great detail, its prescription
is presented. In Section 4, EWPTs in the SM and its extension by the real scalar are discussed.
We also show a gauge-invariant perturbative treatment and make a comparison among different
calculations. Summary and outlook are given in Section 5. Some details are relegated to Appendix A.
Throughout this article, we exclusively consider flat spacetime and use convention of gµν = gµν =

diag(1,−1,−1,−1) in Minkowski space.

2. Symmetry Restoration and Order of Phase Transitions

We start by giving necessary tools for analyzing phase transition at finite temperature. The most
basic quantity is partition function, which is defined as [3]

Z[T] = Tr[e−H/T ] = N
∫

b.c.
[dΨ] exp

[
−
∫ 1/T

0
dτ
∫

d3x L(Ψ)

]
, (1)

with the boundary conditions φ(0, x) = φ(1/T, x) for bosons and ψ(0, x) = −ψ(1/T, x) for fermions,
which follow from the property of the traceness of Z[T]. Because of this boundary conditions,
Fourier modes of the imaginary time τ are discretized (referred to as Matsubara frequency modes),
and the momentum integral in the dimensional regularization is cast into the form

µε
∫ dDk

(2π)D → µεiT
∞

∑
n=−∞

∫ dD−1k
(2π)D−1 ≡ i∑

∫
k

(2)

where D = 4 − ε, µ is an arbitrary scale with a mass dimension one, ωn = 2πn for bosons and
ωn = (2n+ 1)πn for fermions with n being integers. Note that bosons have ω0 = 0 mode, which causes
an infrared (IR) divergence problem as demonstrated in Section 3.
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As is the case at zero temperature [111], the one-loop effective potential can be derived by

µεV1(ϕ; T) =
1
2 ∑
∫

K
ln(K2 + m̄2) =

1
2

∫
k

ln(k2 − m̄2) +
T4

2π2 IB,F(a2), (3)

where ϕ is the classical field, m̄ is the ϕ-dependent mass, K2 = ω2
n + k2, the first term corresponds to

the zero temperature effective potential,
∫

k = µε
∫ dDk

(2π)D with k2 = (k0)2 − k2, while the second term

is finite temperature contribution and IB,F(a2) are defined as

IB,F(a2) =
∫ ∞

0
dx x2 exp

[
1∓ e−

√
x2+a2

]
, (4)

with a2 = m̄2/T2. The high temperature expansions (HTE) of IB,F are, respectively, given by

IHTE
B (a2) = −π4

45
+

π2

12
a2 − π

6
(a2)3/2 − a4

32

(
log

a2

αB
− 3

2

)
+O(a6), (5)

IHTE
F (a2) =

7π4

360
− π2

24
a2 − a4

32

(
log

a2

αF
− 3

2

)
+O(a6), (6)

where ln αB = 2 ln 4π − 2γE = 3.91 and ln αF = 2 ln π − 2γE = 1.14. The general expressions of
higher-order terms can be found in Ref. [11]. Numerical analysis shows that |IB(a2)− IHTE

B (a2)| . 0.05
if a . 2.3 and |IF(a2)− IHTE

F (a2)| . 0.05 for a . 1.7. With this expansions, one can see that V1(ϕ, T)
includes +c2 ϕ2T2 with c being some coupling, which makes spontaneous broken symmetry restored
at high temperature. In order words, the phase transition could exist at high temperature. If this is the
case, the order of the phase transition is of our interest.

In Figure 1, first- and second-order phase transitions are depicted in upper and lower panels,
respectively. In the left panels, the effective potentials are plotted as functions of ϕ while the
temperature evolutions of the scalar VEV are shown in the right panels. In the first-order phase
transition case, there exists discontinuity in the evolution of the vacuum and the critical temperature
(TC) is defined at a temperature at which Veff has the degenerate minima separated by the potential
barrier as shown in the upper left panel. vC is the VEV at TC, where T approaches TC from below.
What is important here is that the bosonic thermal loop contribution has the cubic term with a negative
sign, −(a2)3/2T4 ' −|ϕ|3T (Here we assume that m̄2 ∝ ϕ2 such as gauge bosons or scalars in classical
scale-invariant theories. In general, however, m̄2 can have an extra mass parameter, for instance in the
φ4 theory, m̄2 = −m2 + λϕ2/2, which will be discussed below) originated from the zero Matsubara
frequency mode ω0 = 0, which can induce the potential barrier. In the second-order phase transition
case, on the other hand, the temperature evolution of VEV is continuous but its first derivative with
respect to the temperature has the singular behavior at TC which is defined by the temperature at
which the curvature at the origin becomes zero. Unlike the first-order phase transition, there is no
potential barrier.

In gauge theories, Veff is inherently gauge dependent. Nevertheless, it is shown that O(ϕ2T2)

term as well as energies at stationery points are gauge-fixing parameter independent. We discuss the
gauge dependence issue in detail in Section 4.3.



Symmetry 2020, 12, 733 4 of 24

Figure 1. Two types of phase transitions. (Upper) Case of the first-order phase transition; shapes of
the effective potential at T > TC, T = TC and T < TC [left panel] and the temperature evolution of the
VEV of scalar [right panel]. (Lower) Counterparts in the case of the second-order phase transition.

Before we discuss EWPT, we consider the φ4 theory in order to see the symmetry behavior at
high-T. The Lagrangian is given by

L =
1
2

∂µ ϕ∂µ ϕ−V0(ϕ), V0(ϕ) = −m2

2
ϕ2 +

λ

4!
ϕ4, (7)

where λ > 0 and m2 > 0. This model has the Z2 symmetry, ϕ → −ϕ, but it is spontaneously
broken because of the −m2 term. The field-dependent scalar mass is derived by m̄2 = ∂2V0/∂ϕ2 =

−m2 + λϕ2/2. The one-loop effective potential in the MS scheme takes the form

V1(ϕ; T) =
m̄4

64π2

(
ln

m̄2

µ̄2 −
3
2

)
+

T4

2π2 IB(a2), (8)

where µ̄2 = 4πe−γE µ2 with γE being the Euler constant. Combining this with V0(ϕ), one finds

Veff(ϕ; T) = V0(ϕ) + V1(ϕ; T)

' −π2T4

90
+

1
2

(
−m2 +

λ

24
T2
)

ϕ2 − T
12π

(m̄2)3/2 +
λ

4!
ϕ4 +

m̄4

64π2

(
ln

T2

µ̄2 + 2cB

)
, (9)

where cB = ln αB/2 and HTE is used in the second line. One can find that the Z2 symmetry can be
restored at high temperature due to the positive contribution of theO(T2) term. Presence of the (m̄2)3/2
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term may signify that the phase transition could be first order with the critical temperature of TC '
vC/
√

λ if (m̄2)3/2 ' λ3/2 ϕ3. Or, if the (m̄2)3/2 term can be neglected, the phase transition would be
reduced to the second order with the critical temperature of TC '

√
m2/λ. As shown in the next section,

the perturbative expansion would break down at around TC even if λ � 1. Therefore, we cannot
make any conclusion about the order of the phase transition from the above potential (9). We explicitly
demonstrate why the perturbative expansion is invalidated at high temperature in the next section.

Before closing this section, we address an issue of the imaginary part of the effective potential. At
T = 0, ln m̄2 would give the imaginary part if m̄2 < 0. Its sign is determined by an iε prescription for
the propagator. Namely, ln

(
m̄2− iε

)
= ln

{
|m̄2|(−1− iε)

}
= ln |m̄2|e−iπ = ln |m̄2| − iπ, and therefore

the imaginary part of V1(ϕ; T = 0) in Equation (8) is [112]

ImV1(ϕ; T = 0) = − m̄4

64π
. (10)

In the work of E. Weinberg and A. Wu [113], the imaginary part is interpreted as a decay rate of a
state. Another interpretation is given by analogy with a Schwinger effect in Ref. [114]. Note that this
imaginary part would be cancelled by a counterpart arising from the thermal function of IB at high
temperature, as indicated by Equation (9). Nevertheless, the effective potential (9) still can be complex
since the (m̄2)3/2 term gives another imaginary part if m̄2 < 0, which could be viewed as a harbinger
of the breakdown of the perturbation theory. As discussed in the next section, the term would be
modified as a consequence of the thermal resummation and the imaginary part could disappear at
high temperature (see Equation (25) or Equation (28)).

3. Breakdown of Perturbative Expansion and Thermal Resummation

Let us consider some loop diagrams at high temperature. For illustrative purpose, we focus on
the φ4 theory [3] (for further developments that are not covered here, see, e.g., Ref. [46,115]). As is the
T = 0 case, the mass term receives higher-order corrections as

M̄2 = m̄2 + Σϕ(ϕ; T), (11)

where Σϕ(ϕ; T) is the temperature-dependent self-energy. At one-loop order, one has

M̄2 = m̄2 +
λ

2
I(m̄2), (12)

where

=
λ

2
I(m̄2) =

λ

2 ∑
∫

K

1
K2 + m̄2 →T>0

λ

2
I′B(a2)

π2 =
λ

2

[
T2

12
− Tm̄

4π
+ · · ·

]
, (13)

where I′B(a2) = ∂IB(a2)/∂a2 and m̄ = (m̄2)1/2. Therefore, this diagram grows with O(T2) at
high temperature. The second term comes from the ω0 = 0 mode, which brings about the IR
divergence discussed below. Now we estimate multi-loop diagrams by fully exploiting Equation (13).
For the moment, we ignore the numerical coefficients to make our discussion simpler.

There exist two types of the 2-loop diagrams: the figure-8 and sunset diagrams. The figure-8
diagram is composed of one 1-vertex bubble (VB) and one 2VB. The former goes like λT2 as seen
from Equation (13) while the latter is estimated as λΣ

∫
K 1/(K2 + m̄2)2 = −λ∂I(m̄2)/∂m̄2 ∼ λT/m̄,

which amounts to
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(figure-8) ∼ λT2
(

λT
m̄

)
. (14)

On the other hand, the sunset diagram in the high-T limit is roughly given by [116].

(sunset) ∼ λ2T2 ln
m̄
T

. (15)

Comparing those two 2-loop diagrams, one finds that the figure-8 diagram becomes dominant at
high temperature. Despite this fact, the sunset diagram plays an important role in studying the phase
transition [116].

Attaching one more 1VB to the lower bubble in the figure-8 diagram, one gets a mouse
diagram in which 3VB comes in. This new contribution is evaluated as λΣ

∫
K 1/(K2 + m̄2)3 =

(λ/2)∂2 I(m̄2)/∂(m̄2)2 ∼ λT/m̄3. Thus we have

(mouse) ∼ (λT2)2
(

λT
m̄3

)
. (16)

On the other hand, if we attach one 1 VB to the upper bubble in the figure-8 diagram, it becomes a
cactus diagram, which is composed of one 1 VB and two 2 VB. From the above estimates, it follows that

(cactus) ∼ λT2
(

λT
m̄

)2
, (17)

Taking the ratio of those two 3-loop diagrams, one finds that (mouse)/(cactus) = T/m̄.
Therefore, the mouse diagram becomes dominant at high temperature. We could have another 3-loop
diagram which is made by attaching one 1 VB to the sunset diagram. However such a diagram cannot
compete with the mouse diagram. Noting that whenever one 1 VB is attached to the lower bubble in
the figure-8 diagram, one gets the factor of λT2/m̄2. Thus, a diagram that is composed of (n− 1) 1 VB
and one nVB (referred to as daisy diagram) is found to be

(daisy) ∼ λ2T3

m̄

(
λT2

m̄2

)n−2

. (18)

Therefore, in addition to λ < 1, it needs λT2/m̄2 < 1 in order that the perturbative expansion
makes sense. However, as discussed in Section 2, one has TC ' m̄/

√
λ when the symmetry is restored,

which means that the one-loop order calculation is not reliable in studying the phase transition.
This demonstration suggests that one has to incorporate all the relevant diagrams into our calculation,
that is, necessity of the resummation.

Let us redo the above analysis taking the numerical factor with care. The daisy diagram is actually
given by
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−i(daisy) =
(
−iλ

2

)n (T2

12

)n−1
(i∂m̄2)n−1 I(m̄2)

(n− 1)!
, (19)

where ∂m̄2 = ∂/∂(m̄2). Note that n = 1 is reduced to 1VB given in Equation (13). Summing up all the
dominant diagrams at high temperature, the self-energy is calculated as

−iΣϕ(ϕ; T) =
∞

∑
n=1

(
−iλ

2

)n (T2

12

)n−1
(i∂m̄2)n−1 I(m̄2)

(n− 1)!

=
∞

∑
n=0

(
−iλ

2

)n+1 (T2

12

)n
(i∂m̄2)n I(m̄2)

(n)!

=

(
−iλ

2

)
exp

(
λT2

24
∂m̄2

)
I(m̄2) =

(
−iλ

2

)
I
(

m̄2 +
λT2

24

)
' −iλ

2

[
T2

12
− T

4π

(
m̄2 +

λT2

24

)1/2

+ · · ·
]

. (20)

Therefore, the daisy resummation to leading order amounts to

M̄2 = m̄2 +
λ

2
I
(

m̄2 +
λT2

24

)
. (21)

Including super-daisy diagrams [3,117], once arrives at a gap equation

M̄2 = m̄2 +
λ

2
I(M̄2). (22)

Note that the sunset-type diagrams such as (15) are not included in the daisy and super-daisy
resummations. In the study of the phase transition, however, such diagram cannot be neglected.

It should be emphasized that the resummation is merely re-organization of the perturbative
expansion so that original Lagrangian is not changed at all. This can be seen as follows. Following the
work of Parwani [118], let us decompose the bare Lagrangian (LB) into the renormalized one (LR) and
corresponding counterterms (LCT) and then add and subtract the thermal mass correction of Σϕ(T) as

LB =

[
LR −

1
2

Σϕ ϕ2
]
+

[
LCT +

1
2

Σϕ ϕ2
]

. (23)

We regard Σϕ appearing in the renormalized Lagrangian as un-perturbed part while the latter as
the part of the counterterm. In this resummed Lagrangian, the scalar propagator is given by 1/(K2 + M̄2)

with M̄2 = m̄2 + Σϕ. Thus, the one-loop effective potential can be obtained by replacing m̄2 with M̄2

in Equation (8):

µεV1+daisy(ϕ; T) =
1
2 ∑
∫

K
ln(K2 + M̄2) =

M̄4

64π2

(
ln

M̄2

µ̄2 −
3
2

)
+

T4

2π2 IB

(
M̄2

T2

)
. (24)

Putting all together and taking HTE, the effective potential in the Parwani scheme is reduced to

VHTE
eff, Parwani(ϕ; T) = (const)− m2

2
ϕ2 +

m̄2

24
T2 − T

12π
(M̄2)3/2 +

λ

4!
ϕ4 +

M̄4

64π2

(
ln

T2

µ̄2 + 2cB

)
, (25)

where (const) denotes the ϕ-independent terms that are irrelevant to the phase transition.
Recalling that the IR divergence is originated from the ω0 = 0 mode, we could resum only this

mode (Arnold-Espinosa (AE) scheme) [116]. In this scheme, the resummed effective potential is cast
into the form
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µεV1+daisy =
1
2 ∑′
∫

K
ln(K2 + m̄2) +

T
2

∫ dD−1k
(2π)D−1 ln(k2 + M̄2)

=
1
2 ∑
∫

K
ln(K2 + m̄2) +

T
2

∫ dD−1k
(2π)D−1

[
ln(k2 + M̄2)− ln(k2 + m̄2)

]
= µεV1(ϕ; T) + Vdaisy(ϕ; T), (26)

where ∑′ in the first line is the summation over n without ω0 = 0 mode, the first term in the second
line is the same as the unresummed one-loop effective potential given in Equation (8) while the second
term is the daisy resuumation, which reads

Vdaisy(ϕ; T) = − T
12π

[
(M̄2)3/2 − (m̄2)3/2

]
. (27)

In the AE scheme, the total effective potential using HTE is cast into the form

VHTE
eff, AE(ϕ; T) = (const)− m2

2
ϕ2 +

m̄2

24
T2 − T

12π
(M̄2)3/2 +

λ

4!
ϕ4 +

m̄4

64π2

(
ln

T2

µ̄2 + 2cB

)
, (28)

where (const) denotes the ϕ-independent terms. This resummed potential agrees with that in the
Parwani scheme Equation (25) except for the last term. Comparisons between the two resummation
schemes in a model of the SM extension can be found in Ref. [75] (for a recent study, see, e.g., Ref. [119]).

Here, we make a comment on the order of the phase transition in the φ4 theory. It is known
from the general argument of renormalization group analysis that the phase transition is second
order [120]. In contrast to this, perturbative calculations could give a different answer. For instance,
if one uses the effective potential with the daisy resummation shown here or super-daisy resummation,
the phase transition is first order [117,121,122]. Beyond those resummations including the sunset-type
diagrams, however, it turns into the second-order phase transition [123–125], which is consistent with
the aforementioned general argument.

Before closing this section, we briefly discuss the resummation in gauge theories. At finite
temperature, the Lorentz symmetry is broken by thermal bath specified by a four vector of uµ,
which takes the form of uµ = (1, 0) in the rest frame of thermal bath. Consequently, the gauge boson
polarization tensor Πµν(p0, p) is constructed by four basis tensors {gµν, pµ pν, uµuν, pµuν + pνuν}. It is
convenient to define uT

µ = uµ − (p · u)pµ/p2 such that uT
µ pµ = 0. With those four basis tensors,

Πµν(p0, p) is generally written as

Πµν(p0, p) = ΠL(p0, p)Lµν(p) + ΠT(p0, p)Tµν(p) + ΠG(p0, p)Gµν(p) + ΠS(p0, p)Sµν(p), (29)

where

Lµν(p) =
uT

µ uT
ν

(uT)2 , Tµν(p) = gµν −
pµ pν

p2 − Lµν(p), (30)

Gµν(p) =
pµ pν

p2 , Sµν(p) =
pµuT

ν + pνuT
µ√

(p · u)2 − p2
. (31)

Note that both Lµν and Tµν are 4-dimensionally transverse while the former (the latter) are
3-dimensionally longitudinal (transverse). In Landau gauge (ξ = 0), the resummed gauge boson
propagator has the form

Dµν(p) =
−Lµν(p)

p2 −m2 −ΠL(p0, p)
+

−Tµν(p)
p2 −m2 −ΠT(p0, p)

, (32)

where m is the gauge boson mass at T = 0. Here, two kind of the gauge boson thermal masses are
defined as
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∆m2
L = lim

p→0
lim

p0→0
ΠL(p0, p), ∆m2

T = lim
p→0

lim
p0→0

ΠT(p0, p). (33)

The former is called electric mass and the latter magnetic mass. It should be noted that the order
of taking limits is not exchangeable. The opposite limit give different results [126]. As well known,
the electric mass can arise perturbatively, which is the order of gT with g being a gauge coupling.
However, it is proven that the magnetic mass does not arise in abelian gauge theories to all orders [126].
In non-abelian gauge theories, on the other hand, the magnetic mass can be generated though its
evaluation requires non-perturbative methods [127]. Unlike the electric mass, the order of the magnetic
mass is g2T.

Thermal resummation in non-abelian gauge theories is formulated as Hard Thermal Loop (HTL)
perturbation theory [128–131], which can resum leading O(T2) corrections in a gauge-invariant way.
This method has been applied to quantum chromodynamics (QCD). In EW theories, on the other
hand, there exist additional mass scales coming from the Higgs and/or new particles beyond the SM,
and thus the presumed scale hierarchy in HTL does not always hold. In this article, we do not cover
details of HTL and other related topics, and readers are referred to Refs. [126,127,132–136].

4. Electroweak Phase Transition

The discovery of the Higgs boson in 2012 has completed the particle content of the SM, and its mass
measurement is the first step towards the re-construction of the Higgs potential. In order to confirm
the role of the Higgs boson as the EW symmetry breaker, the measurement of the Higgs self-coupling
is indispensable. For the detectability at future high-energy colliders, see, e.g., Refs. [137–139].
As discussed in the previous section, the symmetry can be restored at high temperature, implying
that EWPT can occur at early epoch of the Universe. If this is the case, a question of our interest is
how it takes place, i.e., what is the order of EWPT? In this section, we discuss a case of first-order EWPT,
which is a dramatic event for cosmology. We exemplify a case in which intermediate breaking of a Z2

symmetry at finite temperature plays a pivotal role in realizing the first-order EWPT.

4.1. Standard Model

We start by discussing EWPT in the SM. Tree-level Higgs potential is comprised of the following
two gauge-invariant terms:

V0(H) = −µ2
H H† H + λH(H† H)2, (34)

where µ2
H > and λH > 0 are presumed. We denote the Higgs doublet field with a hypercharge 1/2 as

H(x) =

(
G+(x)

1√
2

(
v + h(x) + iG0(x)

) ) , (35)

where v = 246 GeV, h denotes the Higgs boson with a mass of 125 GeV, and G0,± are the
Nambu-Goldstone (NG) bosons that are absorbed into the longitudinal components of the Z and W±

bosons. The vacuum is determined by the stationary condition of〈
∂V0

∂h

〉
= v

[
− µ2

H + λHv2
]
= 0, (36)

where 〈X〉 denotes X is evaluated in the vacuum where the fluctuation fields are zero, enforcing µ2
H =

λHv2. In the vacuum, the Higgs boson mass is given by

m2
h =

〈
∂2V0

∂h2

〉
= −µ2

H + 3λHv2 = 2λHv2 (37)

where the vacuum condition is used to eliminate µ2
H .
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Let us denote the classical constant background field as ϕ. From Equation (34), the tree-level
effective potential is given by

V0(ϕ) = −
µ2

H
2

ϕ2 +
λH
4

ϕ4. (38)

As is the calculation in the φ4 theory, the one-loop effective potential without thermal resummation
is written as

V1(ϕ; T) = VCW(ϕ) + ∑
i

ni
T4

2π2 IB,F

(
m̄2

i
T2

)
, (39)

with

VCW(ϕ) = ∑
i

ni
m̄4

i
64π2

(
ln

m̄2
i

µ̄2 − ci

)
(40)

where i = h, G0, G±, W, Z, t, VCW(ϕ) is regularized by the MS scheme, ni are the degrees of freedom
with a statistics: nh = nG0 = 1, nG± = 2, nW = 6, nZ = 3 and nt = −12. ci = 3/2 for scalars and
fermions while ci = 5/6 for gauge bosons. The explicit forms of the field-dependent masses are

m̄2
h = −µ2

H + 3λH ϕ2, m̄2
G0 = m̄2

G± = −µ2
H + λH ϕ2, (41)

m̄2
W =

g2
2

4
ϕ2, m̄2

Z =
g2

2 + g2
1

4
ϕ2, m̄2

t =
y2

t
2

ϕ2, (42)

where g2, g1 and yt are the SU(2)L, U(1)Y and top Yukawa couplings, respectively. The masses in the
vacuum are obtained by m2

i = 〈m̄2
i 〉 = m̄2

i |ϕ=v.
The vacuum and Higgs boson mass at one-loop level in the MS scheme are defined by

the conditions:

0 =

〈
∂(V0 + VCW)

∂ϕ

〉
= (−µ2

H + λHv2)v +

〈
∂VCW

∂ϕ

〉
, (43)

m2
h =

〈
∂2(V0 + VCW)

∂ϕ2

〉
= 2λHv2 +

〈
∂2VCW

∂ϕ2

〉
− 1

v

〈
∂VCW

∂ϕ

〉
. (44)

Note that the relationship between the MS Higgs boson mass and the on-shell (OS) mass (Mh) is
given by

M2
h = m2

h + ∆Σh(Mh), (45)

where ∆Σh(Mh) = ReΣ̄h(Mh)−ReΣ̄h(0) with Σ̄h being the self-energy of the Higgs boson regularized
by the MS scheme. Note that all the parameters except Mh in Equation (45) are the MS running
parameters that are governed by renormalization group equations. One can show that M2

h is
independent of µ̄ by noting that

dm2
h

d ln µ̄
= 2γhm2

h,
d∆Σh(Mh)

d ln µ̄
= −2γhm2

h, (46)

where γh is the anomalous dimension of the Higgs field. At one-loop order, we actually have

dm2
h,1-loop

d ln µ̄
' 2γ

(1)
h m2

h,tree,
d∆(1)Σh(Mh)

d ln µ̄
' −2γ

(1)
h m2

h,tree, (47)
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where m2
h,1-loop is given by Equation (44), m2

h,tree = 2λHv2 and γ
(1)
h ' [−3(3g2

2 + g2
1)/4 + 3y2

t ]/(16π2).

From those, it follows that dM2
h/d ln µ̄ = 0 at one-loop level.

We note in passing that in the SM, the one-loop correction of ∆Σh(Mh) is rather minor if µ̄ is
evaluated at the pole mass of the top quark.

Another renormalization conditions often used in the literature is “OS-like" renormalization in
which [5,75] 〈

∂(VCW + VCT)

∂ϕ

〉
= 0,

〈
∂2(VCW + VCT)

∂ϕ2

〉
= 0, (48)

where VCT = −δµ2
H ϕ2/2. Those two conditions determine δµ2

H and µ̄ as

δµ2 =
1
v

〈
∂V1

∂ϕ

〉
, µ̄ = exp

[
∑i〈m̄2′

i 〉2(ln m2
i − ci + 3/2)

2 ∑i〈m̄2′
i 〉2

]
, (49)

where 〈m̄2′′
i 〉 − 〈m̄2′

i 〉/v = 0 is used in µ̄. With those, the effective potential at one-loop level takes
the form

VCW(ϕ) = ∑
i

ni
64π2

[
2m2

i m̄2
i + m̄4

i

(
ln

m̄2
i

m2
i
− 3

2

)]
. (50)

Note that this scheme is not exactly the same as the OS scheme since the mass is not defined at
the pole position of the Higgs boson propagator as given above. By “OS-like", we mean that tree-level
relations among the model parameters such as m2

h = 2λHv2 hold even at higher orders as is the
genuine OS renormalization. We quantify numerical impacts of the scheme dependences on EWPT in
Section 4.4. In what follows, we employ the OS-like scheme.

Aside from numerical accuracy, HTEs of IB,F make it easy to discuss physics. The high-T expanded
effective potential is cast into the form

Veff(ϕ; T) = V0(ϕ) + V1(ϕ; T) ' D(T2 − T2
0 )ϕ2 − ET|ϕ|3 + λT

4
ϕ4 + · · · , (51)

where

T2
0 =

1
D

(
1
4

m2
h − 2Bv2

)
, (52)

B =
3

64π2v4

(
2m4

W + m4
Z − 4m4

t

)
, (53)

D =
1

8v2

(
2m2

W + m2
Z + 2m2

t

)
, (54)

E =
1

4πv3

(
2m3

W + m3
Z

)
, (55)

λT =
m2

h
2v2

[
1− 3

8π2v2m2
h

{
2m4

W log
m2

W
αBT2 + m4

Z log
m2

Z
αBT2 − 4m4

t log
m2

t
αFT2

}]
. (56)

Appearance of the cubic term signals that EWPT is first order. Its critical temperature TC satisfies

Veff(0; TC) = Veff(vC; TC),
∂Veff(ϕ; TC)

∂ϕ

∣∣∣∣
ϕ=0

=
∂Veff(ϕ; TC)

∂ϕ

∣∣∣∣
ϕ=vC

, (57)

from which, one gets

TC =
T0√

1− E2/(λTC D)
, vC =

2ETC
λTC

, (58)
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Note that T0 < TC due to the presence of E. In the case of second-order EWPT in which E = 0, T0

becomes the critical temperature. Straightforward numerical calculations show that T0 ' 163.1 GeV,
B ' −4.4× 10−3, D ' 0.17, E ' 9.6× 10−3 and λTC ' m2

h/(2v2) ' 0.13, which leads to TC ' 163.4
GeV and vC ' 24.3 GeV, where mh = 125.0 GeV, mW = 80.4 GeV, mZ = 91.2 GeV and mt = 172.9 GeV
are used [6].

In the context of EWBG, to avoid the washout of the created BAU after EWPT, one has to have

vC
TC

=
2E
λTC

& 1. (59)

However, from the above numerical analysis one has vC/TC ' 0.15. Therefore, the EWBG
possibility is excluded in the SM. We note in passing that if the Higgs boson is the free parameter and
other particles masses are fixed to the observed values, one finds mh . 48 GeV. To circumvent this
difficulty, enhanced E and/or suppressed λTC are necessary. This can be realized in the extension of
the SM, as discussed in the next section.

Before moving to beyond the SM, we give some remarks on the above results.

• The above demonstration does not take the thermal resummation into consideration. If one
performs it by either the Parwani or AE scheme, E would be diminished by the resummation
effect as discussed in Section 3.

• The effective potential is the sum of 1-particle-irreducible diagrams by definition, which is
inherently gauge dependent, and so the VEV defined by the minimum of the effective potential
depends on a choice of specific gauge. This is natural consequence since the normalization of the
scalar fields (wavefunction renormalization) is missing. Notwithstanding, energies at stationary
points are gauge independent obeyed by the NFK identity [109,110].

• Since the phase transition is generically non-perturbative phenomenon, lattice calculations are
more suitable to obtain robust results. It is shown in Refs. [140–143] that EWPT turns into smooth
crossover for mh & 73 GeV. After the Higgs boson discovery, EWPT is re-analyzed in Ref. [144] in
a different context. The “critical temperature" is found to be TC = 159.5± 1.5 GeV.

4.2. Standard Model with a Real Scalar

As discussed in the previous section, the parameter space of the strong first-order EWPT
(vC/TC & 1) in the SM is not consistent with the observed Higgs boson. One of the simplest
extensions of the SM is to add a real scalar field that is singlet under the SM gauge group
SU(3)C × SU(2)L × U(1)Y (referred to as rSM). As first emphasized by Funakubo et al. in the
next-to-minimal supersymmetric SM [97], such a singlet scalar can increase the possibility of the
first-order EWPT owing to multi-step transitions. In addition to this, the singlet scalar can be DM
if the model is Z2 symmetric. (The Z2 symmetry is phenomenologically introduced to have the DM
candidate. Since its origin is highly model dependent, we do not specify it in this review). Note that
even though the Z2 symmetry is preserved at T = 0, it does not necessarily hold at T > 0 depending
on thermal history of the vacuum evolution. In what follows, we discuss two types of phase transitions
as shown in Figure 2.
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Figure 2. 2 patterns of the phase transitions in the presence of the SM Higgs and real scalar fields:
(i) O → EW (1-step transition) and (ii) O → I → EW (2-step transitions). In the latter case, the Z2

symmetry is spontaneously broken in the intermediate phase (I phase) while restored in the EW phase,
and S can become DM.

Let us denote the singlet scalar as S. The extended Higgs potential is cast into the form

V0(H, S) = −µ2
H H† H + λH(H† H)2 −

µ2
S

2
S2 +

λS
4

S4 +
λHS

2
H† HS2 (60)

where H is given in Equation (35). The stationary conditions of H and S are, respectively, given by〈
∂V0

∂h

〉
= v

[
− µ2

H + λHv2 +
λHS

2
v2

S

]
= 0, (61)〈

∂V0

∂S

〉
= vS

[
−µ2

S + λSv2
S +

λHS
2

v2
]
= 0. (62)

where vS is VEV of S. By assumption, the Z2 symmetry is preserved at T = 0, which enforces vS = 0.
The Higgs boson masses at tree level take the form

m2
h = −µ2

H + 3λHv2 = 2λHv2, (63)

m2
S = −µ2

S +
λHS

2
v2. (64)

Denoting the classical constant background fields of the doublet and singlet scalars as ϕ and ϕS,
the effective potential at tree level is given by

V0(ϕ, ϕS) = −
µ2

H
2

ϕ2 +
λH
4

ϕ4 +
λHS

4
ϕ2 ϕ2

S −
µ2

S
2

ϕ2
S +

λS
4

ϕ4
S. (65)

To avoid the unbounded from below in the ϕ and ϕS directions, λH > 0 and λS > 0 are imposed.
Moreover, the case of λHS < 0 needs additional condition. Denoting ϕS = δϕ with δ being a real
parameter, the quartic terms in the Higgs potential can be written as

V0(ϕ, ϕS) =
1
4
(λH + λHSδ2 + λSδ4)ϕ4. (66)

The coefficient of ϕ4 has to be positive for any δ, which leads to λ2
HS < 4λHλS.

For µ2
S > 0, a local minimum can appear in the singlet scalar direction, developing ṽS. For the EW

vacuum to be the global minimum, one must have V0(v, 0) < V0(0, ṽS), resulting in
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λS > λH
µ4

S
µ4

H
=

2
m2

hv2

(
m2

S −
λHS

2
v2
)2
≡ λmin

S . (67)

In the rSM, only 3 free parameters exist. We consider mS, λHS and λS as the input parameters in
the following discussion.

First, we consider a simplified potential

V(ϕ, ϕS; T) = V0(ϕ, ϕS) +
1
2

ΣH(T)ϕ2 +
1
2

ΣS(T)ϕ2
S − ETϕ3, (68)

where ΣH(T) and ΣS(T) are the thermal masses of H and S, which are, respectively, given by [32]

ΣH(T) =

[
λH
2

+
λHS
24

+
3g2

2 + g2
1

16
+

y2
t

4

]
T2, (69)

ΣS(T) =
[

λS
4

+
λHS

6

]
T2. (70)

We begin with discussing a case in which the phase transition occurs only once (1-step transition
scenario). It is convenient that the two scalar fields are parametrized in polar coordinates: ϕ = z cos γ

and ϕS = z sin γ, where 0 ≤ γ ≤ π/2. Hereafter we use shorthand notations: sγ = sin γ and
cγ = cos γ. At TC, one finds that V(z, γ; TC) = c4z2(z − zC)

2 with c4 being (λHc4
γC

+ λHSs2
γC

c2
γC

+

λSs4
γC
)/4, yielding

vC
TC

=
zC
TC

cγC
=

Ec4
γC

(λHc4
γC

+ λHSs2
γC

c2
γC

+ λSs4
γC
)/2

. (71)

Therefore, the strength of the first-order EWPT can be enhanced for λHS < 0.
Now we move on to discuss another case in which the phase transitions occur twice (2-step

transition scenario). In this case, the phase transition prior to EWPT can be described by the potential

V0(ϕS) =
1
2
(
− µ2

S + ΣS(T)
)

ϕ2
S +

λS
4

ϕ4
S. (72)

The local minimum appears if µ2
S > ΣS(T), which is given by ṽ2

S = (µ2
S − ΣS)/λS. Note that the

critical temperature in this case (denoted as TI) is given by µ2
S = ΣS(TI), i.e.,

T2
I =

µ2
S

λS/4 + λHS/6
. (73)

To analyze EWPT, we use the polar coordinates ϕ = zcγ and ϕS = zsγ + ṽS. Repeating the similar
calculation as the case of the 1-step transition scenario, one can find

vC
TC

=
zC
TC

cγC
=

Ec4
γC
− sγC

cγC
ṽS

[
λHSc2

γC
/2 + λSs2

γC

]
/TC

(λHc4
γC

+ λHSs2
γC

c2
γC

+ λSs4
γC
)/2

. (74)

Owing to SSB of the Z2 symmetry, additional terms proportional to ṽS appear in the numerator.
Consequently, the first-order EWPT can be strengthened if λHS > 0 together with sγC

< 0, which is
stark contrast to the 1-step transition scenario. Note that while ṽS can get larger for smaller λS as
shown above, the smallness of λS is limited by the global minimum condition (67).

Without the simplification, the one-loop effective potential in the MS scheme is given by

V1(ϕ, ϕS; T) = ∑
i

ni

[
VCW(m̄2

i ) +
T4

2π2 IB,F

(
m̄2

i
T2

)]
, (75)
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where i = H1,2, G0, G±, W, Z, t. In the numerical study shown in Section 4.4, we adopt the Parwani
scheme for the thermal resummation.

4.3. Perturbative Gauge-Invariant Treatment for the Thermal Phase Transitions

As briefly discussed in Section 4.1, the treatment of EWPT shown above suffers from the gauge
dependence problem. Here, we introduce two gauge-invariant methods: high-T potential (HT) scheme
and Patel-Ramsey-Musolf (PRM) scheme [145] and apply them to the 2-step transition scenario in
the rSM.

Given the fact that the leading thermal mass is gauge independent, the simplest gauge-invariant
effective potential is constructed by adding the thermal quadratic terms into the tree-level
Higgs potential, which is nothing but the potential (68) without the cubic term:

VHT(ϕ, ϕS; T) = V0(ϕ, ϕS) +
1
2

ΣH(T)ϕ2 +
1
2

ΣS(T)ϕ2
S. (76)

In this method, the 1-step scenario always induces the second-order EWPT while the 2-step
transition scenario could accommodate the first-order EWPT depending on the parameter choices,
as understood from the analysis in Section 4.2. In spite of the gauge-invariant construction, the main
drawback here is lack of the quantum corrections that could be relevant. We quantify this statement in
Section 4.4.

In contrast to this, the PRM scheme can take account of the quantum corrections to TC based on
the NFK identity. The statement of this identity is that energies at stationary points of the effective
potential are gauge independent, i.e.,

∂Veff(ϕ, ξ)

∂ξ
= −C(ϕ, ξ)

∂Veff(ϕ, ξ)

∂ϕ
, (77)

where ξ is the gauge-fixing parameter and C(ϕ, ξ) is some functional. While the statement is
very simple, it needs some caution when we work in the perturbation theory. To derive the NFK
identity at given order, we expand Veff(ϕ, ξ) and C(ϕ, ξ) in powers of h̄ as

Veff(ϕ, ξ) = V0(ϕ) + h̄V1(ϕ, ξ) + h̄2V2(ϕ, ξ) + · · · , (78)

C(ϕ, ξ) = c0 + h̄c1(ϕ, ξ) + h̄2c2(ϕ, ξ) + · · · . (79)

At tree level, there is no ξ dependence so that c0 must vanish. At one-loop level, O(h̄), on other
hand, one can find

∂V1

∂ξ
= −c1

∂V0

∂ϕ
. (80)

It should be noted that the ξ dependence of V1 vanishes at the stationary points of V0 rather than V1.
Let us look into the ξ dependence of V1 more explicitly. The one-loop effective potential in the Rξ

gauge may contain the following ξ-dependent pieces:

V1(ϕ; T) 3
(m̄2

G + ξm̄2
V)

2

64π2

(
ln

m̄2
G + ξm̄2

V
µ̄2 − 3

2

)
−

(ξm̄2
V)

2

64π2

(
ln

ξm̄2
V

µ̄2 −
3
2

)

+
T4

2π2

[
IB

(
m̄2

G + ξm̄2
V

T2

)
− IB

(
ξm̄2

V
T2

)]
, (81)

where m̄2
V and m̄2

G are the field-dependent masses of the gauge and NG bosons. The ξ dependence
would disappear at the point of m̄2

G = 0, namely, 〈∂V0/∂ϕ〉 = 0, satisfying the NFK identity at
one-loop order. On the other hand, the vacuum condition used in the usual perturbative analysis,
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for example in the MS scheme, is 〈∂(V0 + V1)/∂ϕ〉 = 0 as given in Equation (43), which thus leads to
the ξ-dependent result.

In the PRM scheme in the rSM, TC at one-loop level is determined by the degeneracy condition

V0(0, ṽS,tree) + V1(0, ṽS,tree; TC) = V0(vtree, vS,tree) + V1(vtree, vS,tree; TC), (82)

where vtree = 246 GeV, vS,tree = 0 and ṽS,tree is the minimum of V0(0, ϕS). Unlike the usual condition
of TC, the field values are fixed to their tree-level minima at T = 0. Since Veff(v1-loop, vS,1-loop; T) <
Veff(vtree, vS,tree; T), where v1-loop and vS,1-loop are the one-loop level minima, TC in the PRM tends to
be lower than that in the ordinary case, which can increase vC/TC. As for the determination of vC in
the PRM scheme, on the other hand, the HT potential (76) is used to maintain the gauge invariance.

Here we remark the thermal resummation in the PRM scheme. While the resumamtion can be
implemented in a gauge-invariant way [145], it needs the two-loop effective potential V2(ϕ; ξ) for the
consistency of the calculation. Nevertheless, such a calculation is not available in the literature and
hence beyond the scope of this review article.

4.4. Comparisons among Various Calculation Schemes

Now we conduct numerical analysis [56]. Among the three input parameters {mS, λHS, λS},
we take mS = mh/2, which is consistent with DM physics [146,147], and λS = λmin

S + 0.1 [37],
where λmin

S is determined by the vacuum condition given in Equation (67). λHS is taken as the varying
parameter. In Figure 3, numerical results of EWPT in rSM are summarized. In order to see the gauge
and scale dependences on EWPT, we consider four calculations methods: the OS-like and MS schemes
as the gauge-dependent methods while PRM and HT as the gauge-independent ones. In the left panel,
TC is shown as a function of λHS. As for the PRM and MS schemes, we take mt/2 ≤ µ̄ ≤ 2mt. One can
see that all the results show the same behavior, namely, TC gets decreased as λHS increases, which is
the fact that the larger λHS make the vacuum energy of I phase lower so that the degeneracy with
that of EW phase happen at lower temperature. As seen, OS-like and MS schemes agree with each
other nicely, while the other two gauge-invariant methods give lower TC to some extent. For PRM,
this behavior is the expected consequence as discussed above. The reason why the µ̄ dependence in
PRM is larger than that in the MS scheme is that the one-loop minimization condition is used in the
latter case, which can partially cancel the µ̄ dependence in determining TC, while such a cancellation is
missing due to use of the tree-level minimization condition in the former case [56].

In the right panel, vC/TC are plotted in the four cases. The color schemes are the same as in the
left plot. The OS-like and MS schemes are consistent with each other within the scale uncertainties.
On the other hand, the PRM scheme show the rather large scale uncertainties. As seen, vC becomes
zero for λHS & 0.25, which is due to the fact that TC in PRM gets larger than that in the HT scheme as
shown in the left plot. Although somewhat big discrepancy exists among the gauge-dependent and
independent schemes, we expect that it gets ameliorated when the higher-order corrections such as
the daisy resummation as well as the two-loop corrections are incorporated in the PRM scheme.



Symmetry 2020, 12, 733 17 of 24

0

20

40

60

80

100

120

140

160

180

0.2 0.25 0.3 0.35 0.4

λHS

T
C
[G

eV
]

PRM

OS-like

MS

HT

0

0.5

1

1.5

2

2.5

3

0.2 0.25 0.3 0.35 0.4

λHS

v C
/T

C

PRM

OS-like

MS

HT

Figure 3. Comparisons among the four calculation schemes. The OS-like and MS schemes are
gauge-dependent while the PRM and HT schemes are gauge independent. For the PRM and MS
schemes, we take mt/2 ≤ µ̄ ≤ 2mt. We take mS = mh/2 and λS = λmin

S + 0.1, where λmin
S is

determined by the vacuum condition. The plots are taken from Ref. [56].

5. Summary and Outlook

We have discussed the high temperature behaviors of symmetries using the perturbative effective
potential. As explicitly demonstrated in the φ4 theory, the symmetry restoration generically causes
the IR divergence problem that invalidates the ordinary perturbative expansion at zero temperature.
To cure this problem, the dominant temperature corrections must be resummed in a consistent way.
In this review, we introduce the two common methods of the thermal resummations, i.e., Parwani and
Arnold-Espinosa schemes. In the former all the Matsubara frequency modes are resummed while in
the latter only zero mode is resummed.

As an interesting cosmological application, we discussed EWPT focusing on the first-order phase
transition case, which is motivated by EWBG as well as physics of gravitational waves. For illustration,
the real scalar extended SM with the Z2 symmetry is considered. In this model, the breaking of the Z2

symmetry at finite temperature can increase the possibility of the first-order EWPT and its restoration
at zero temperature plays a fundamental role in accommodating the DM candidate.

We also addressed the problem of gauge and scheme dependences of EWPT. The comparison
is made among the four calculation methods: MS, OS-like, PRM and HT schemes. In any case,
the numerical study shows that the behaviors of the critical temperature against the coupling between
the SM Higgs and real scalar are consistent with each other and indicates the occurrence of the
first-order EWPT (for the PRM scheme within the scale uncertainties). Nevertheless, none of the
methods are gauge invariant and less scale dependent, which motivates one to refine the calculations
including higher-order corrections.

In closing, through the demonstration here, we highlight the technical issues of the perturbative
treatments of the thermal phase transition and illustrate the need to exercise caution when applying
them to EWPT. However, this does not necessarily mean that the issues are just technical. In the
current perturbative approach, for instance, the order parameter is the VEV of the Higgs field which
is inherently gauge dependent. We may need to find better order parameter and newly develop
formalism rather than fixing the drawbacks of the current methods.
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Appendix A. Thermally Corrected Field-Dependent Masses in the rSM

The thermally corrected Higgs mass matrix takes the form

M̄2
H =

(
−µ2

H + 3λH ϕ2 + λHS
2 ϕ2

S + ΣH(T) λHS ϕϕS

λHS ϕϕS −µ2
S + 3λS ϕ2

S +
λHS

2 ϕ2 + ΣS(T)

)
, (A1)

where ΣH(T) and ΣS(T) are given by Equations (69) and (70). For the NG bosons, one finds

M̄2
G0 = M̄2

G± = −µ2
H + λH ϕ2 +

λHS
2

ϕ2
S + ΣH(T). (A2)

As given in Equation (33), there are two distinct thermal masses for the longitudinal and transverse
gauge fields. At one-loop order, only the former receive the nonzero corrections. The thermally
corrected gauge boson mass matrix in the basis (A1

µ, A2
µ, A3

µ, Bµ) is cast into the form

M̄2
VL

=


g2

2 ϕ2/4 + ΠW(T) 0 0 0
0 g2

2 ϕ2/4 + ΠW(T) 0 0
0 0 g2

2 ϕ2/4 + ΠW(T) −g2g1 ϕ2/4
0 0 −g2g1 ϕ2/4 g2

1 ϕ2/4 + ΠB(T)

 . (A3)

The corresponding eigenvalues are, respectively, given by

M̄2
ZL ,γL

=
1
2

[
1
4
(g2

2 + g2
1)ϕ2 + ΠW(T) + ΠB(T)

±

√(
1
4
(g2

2 − g2
1)ϕ2 + ΠW(T)−ΠB(T)

)2

+
g2

2g2
1

4
ϕ4

]
, (A4)

M̄2
WL

= m̄2
W + ΠW(T), (A5)

where ΠW(T) and ΠB(T) are [148]

ΠW(T) =
[

5
6
+

Ng(NC + 1)
12

]
g2

2T2 =
Ng=NC=3

11
6

g2
2T2, (A6)

ΠB(T) =
[

1
6
+

Ng

12

(
11
9

NC + 3
)]

g2
1T2 =

Ng=NC=3

11
6

g2
1T2. (A7)

where Ng denotes the number of fermion generation and NC is the number of color, and the last
equalities are evaluated with Ng = NC = 3.
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