# Multi-Symplectic Method for the Logarithmic-KdV Equation

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. A Multi-Symplectic Formulation for the Logarithmic-KdV Equation

## 3. A Multi-Symplectic Centered Box Scheme for the Logarithmic-KdV Equation

## 4. Numerical Experiments on Gaussian Solitary Wave Propagation

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Bridges, T.J. Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc.
**1997**, 121, 147–190. [Google Scholar] [CrossRef] [Green Version] - Marsden, J.E.; Patrick, G.P.; Shkoller, S. Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys.
**1998**, 199, 351–395. [Google Scholar] [CrossRef] [Green Version] - Bridges, T.J.; Reich, S. Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A
**2001**, 284, 184–193. [Google Scholar] [CrossRef] - Wlodarczyk, T.H. Stability and Preservation Properties of Multisymplectic Integrators. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2007. [Google Scholar]
- Zhao, P.F.; Qin, M.Z. Multisymplectic geometry and multisymplectic Preissman scheme for the KdV equation. J. Phys. A-Math. Gen.
**2000**, 33, 3613–3626. [Google Scholar] [CrossRef] - Wang, Y.S.; Wang, B.; Chen, X. Multi-symplectic Euler box scheme for the KdV equation. Chin. Phys. Lett.
**2007**, 24, 312–314. [Google Scholar] - Aydin, A.; Karasozen, B. Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions. Comput. Phys. Commun.
**2007**, 177, 566–583. [Google Scholar] [CrossRef] - Hong, J.L.; Jiang, S.S.; Li, C. Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations. J. Comput. Phys.
**2009**, 228, 3517–3532. [Google Scholar] [CrossRef] - Cohen, D.; Owren, B.; Raynaud, X. Multi-symplectic integration of the Camassa-Holm equation. J. Comput. Phys.
**2008**, 227, 5492–5512. [Google Scholar] [CrossRef] - Zhang, Y.; Deng, Z.C.; Hu, W.P. Multisymplectic method for the Camassa-Holm equation. Adv. Diff. Equ.
**2016**, 7, 1–12. [Google Scholar] [CrossRef] [Green Version] - Hu, W.P.; Deng, Z.C.; Han, S.M.; Zhang, W.R. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. J. Comput. Phys.
**2013**, 235, 394–406. [Google Scholar] [CrossRef] - Zhang, Y.; Deng, Z.C.; Hu, W.P. Generalized Multi-symplectic integrator for vibration of a damping string with the driving force. Int. J. Appl. Mech.
**2017**, 9, 1750004. [Google Scholar] [CrossRef] - Hu, W.P.; Deng, Z.C. Competition between geometric dispersion and viscous dissipation in wave propagation of KdV-Burgers equation. J. Vib. Control
**2015**, 21, 2937–2945. [Google Scholar] [CrossRef] - Hong, J.L.; Ji, L.H.; Zhang, L.Y. A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise. J. Comput. Phys.
**2014**, 268, 255–268. [Google Scholar] [CrossRef] - Chen, C.C.; Hong, J.L.; Zhang, L.Y. Preservation of physical properties of stochastic Maxwell equations with additive noise via stochastic multi-symplectic methods. J. Comput. Phys.
**2016**, 306, 500–519. [Google Scholar] [CrossRef] [Green Version] - Bhatt, A.; Floyd, D.; Moore, B.E. Second order conformal symplectic schemes for damped Hamiltonian systems. J. Sci. Comput.
**2016**, 66, 1234–1259. [Google Scholar] [CrossRef] - Bhatt, A.; Moore, B.E. Exponential integrators preserving local conservation laws of PDEs with time-dependent damping/driving forces. J. Comput. Appl. Math.
**2019**, 352, 341–351. [Google Scholar] [CrossRef] [Green Version] - Wazwaz, A.M. Gaussian solitary wave solutions for nonlinear evolution equation with logarithmic nonlinearities. Nonlinear Dyn.
**2016**, 83, 591–596. [Google Scholar] [CrossRef] - Darvishi, M.T.; Najafi, M. Some extensions of Zakharov-Kuznetsov equations and their Gaussian solitary wave solutions. Phys. Scr.
**2018**, 93, 085204. [Google Scholar] [CrossRef] - James, G.; Pelinovsky, D. Gaussian solitary waves and compactons in Fermi-Pasta-Ulam lattices with Hertzian potentials. Proc. R. Soc. A-Math. Phys.
**2014**, 470, 20130462. [Google Scholar] [CrossRef] - Wazwaz, A.M. Gaussian solitary waves for the logrithmic-KdV and the logarithmic-KP equations. Phys. Scr.
**2014**, 89, 095206. [Google Scholar] [CrossRef] - Wang, G.W.; Xu, T.Z. Group analysis, explicit solutions and conservation laws of the Logarithmic-KdV equation. J. Korean Phys. Soc.
**2015**, 66, 1475–1481. [Google Scholar] [CrossRef]

**Figure 2.**The waveforms of the Gaussian soliton at (

**a**) $t=1$, (

**b**) $t=4$, (

**c**) $t=7$ and (

**d**) $t=10$ when $c=0.2$ (where the dashed line is the analytical solution and the solid line is the numerical solution).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, Y.; Li, S.
Multi-Symplectic Method for the Logarithmic-KdV Equation. *Symmetry* **2020**, *12*, 545.
https://doi.org/10.3390/sym12040545

**AMA Style**

Zhang Y, Li S.
Multi-Symplectic Method for the Logarithmic-KdV Equation. *Symmetry*. 2020; 12(4):545.
https://doi.org/10.3390/sym12040545

**Chicago/Turabian Style**

Zhang, Yu, and Shaohua Li.
2020. "Multi-Symplectic Method for the Logarithmic-KdV Equation" *Symmetry* 12, no. 4: 545.
https://doi.org/10.3390/sym12040545