# Bayesian Inference for Skew-Symmetric Distributions

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Default Prior Choices in Bayesian Statistics

#### 2.1. Jeffreys Priors

#### 2.2. Reference Priors

#### 2.3. Matching Priors

## 3. Prior Choices for the Skew-Normal Distribution

#### 3.1. The Reference Prior

#### 3.2. The Matching Prior

#### 3.3. The Informative Priors of Canale and Scarpa (2013)

## 4. Prior Choices for Other Skew-Symmetric Distributions

#### 4.1. Jeffreys’ Prior for Skew-t Distributions

#### 4.2. Jeffreys Prior for General Skew-Symmetric Models

#### 4.3. Distance-Based Priors

#### 4.4. Prior Choices in the Presence of Kurtosis Parameters

## 5. Overview on Related Topics

## 6. Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Ley, C. Skew distributions. In Statistical Theory and Methods, Encyclopedia of Environmetrics, 2nd ed.; El-Shaarawi, A., Piegorsch, W., Eds.; Wiley: New York, NY, USA, 2012; pp. 1944–1949. [Google Scholar]
- Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat.
**1985**, 12, 171–178. [Google Scholar] - Azzalini, A.; Capitanio, A. The Skew-Normal and Related Families; IMS Monograph Series; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Wang, J.; Boyer, J.; Genton, M. A skew-symmetric representation of multivariate distribution. Stat. Sin.
**2004**, 14, 1259–1270. [Google Scholar] - Azzalini, A.; Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc. Ser. B
**2003**, 65, 367–389. [Google Scholar] [CrossRef] - Azzalini, A. Further results on a class of distributions which includes the normal ones. Statistica
**1986**, 46, 199–208. [Google Scholar] - Nadarajah, S. The skew logistic distribution. Statistica
**2009**, 93, 197–203. [Google Scholar] [CrossRef] - Henze, N. A probabilistic representation of the skew-normal distribution. Scand. J. Stat.
**1986**, 13, 271–275. [Google Scholar] - Azzalini, A.; Capitanio, A. Statistical applications of the multivariate skew-normal distribution. J. R. Stat. Soc. Ser. B
**1999**, 61, 579–602. [Google Scholar] [CrossRef] - Azzalini, A.; Genton, M. Robust likelihood methods based on the skew-t and related distributions. Int. Stat. Rev.
**2008**, 76, 106–129. [Google Scholar] [CrossRef] - Chiogna, M. A note on the asymptotic distribution of the maximum likelihood estimator for the scalar skew-normal distribution. Stat. Methods Appl.
**2005**, 14, 331–341. [Google Scholar] [CrossRef] - Hallin, M.; Ley, C. Skew-symmetric distributions and Fisher information—A tale of two densities. Bernoulli
**2012**, 18, 747–763. [Google Scholar] [CrossRef] - Hallin, M.; Ley, C. Skew-symmetric distributions and Fisher information: The double sin of the skew-normal. Bernoulli
**2014**, 20, 1432–1453. [Google Scholar] [CrossRef] - Ley, C.; Paindaveine, D. On the singularity of multivariate skew-symmetric models. J. Multivar. Anal.
**2010**, 101, 1434–1444. [Google Scholar] [CrossRef] [Green Version] - Pewsey, A. Problems of inference for Azzalini’s skew-normal distribution. J. Appl. Stat.
**2000**, 27, 859–870. [Google Scholar] [CrossRef] - Arellano-Valle, R.B.; Azzalini, A. The centred parametrization for the multivariate skew-normal distribution. J. Multivar. Anal.
**2009**, 99, 1362–1382, Erratum in 2009, 100, 816. [Google Scholar] [CrossRef] - Firth, D. Bias reduction of maximum likelihood estimates. Biometrika
**1993**, 80, 27–38. [Google Scholar] [CrossRef] - Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis, 3rd ed.; Chapman & Hall/CRC: London, UK, 2013. [Google Scholar]
- Bernardo, J.M. Reference posterior distributions for Bayesian inference (with discussion). J. R. Stat. Soc. Ser. B
**1979**, 41, 113–147. [Google Scholar] - Bayes, T. An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Ser. A
**1763**, 53, 370–418. [Google Scholar] [CrossRef] - Laplace, P.S. Théorie Analytique des Probabilités; Courcier: Paris, France, 1812. [Google Scholar]
- Bernardo, J.M.; Berger, J.O. On the development of reference priors (with discussion). Bayesian Stat.
**1992**, 4, 35–60. [Google Scholar] - Efron, B. Why isn’t everyone a Bayesian? (with discussion). Am. Stat.
**1986**, 40, 1–11. [Google Scholar] - Lindley, D.V. On the measure of the information provided by an experiment. Ann. Math. Stat.
**1956**, 27, 986–1005. [Google Scholar] [CrossRef] - Berger, J.O.; Bernardo, J.M. Estimating a product of means. Bayesian analysis with reference priors. J. Am. Stat. Assoc.
**1989**, 84, 200–207. [Google Scholar] [CrossRef] - Lindley, D.V. Fiducial distributions and Bayes’ theorem. J. R. Stat. Soc. Ser. B
**1958**, 20, 102–107. [Google Scholar] [CrossRef] - Datta, G.S.; Mukerjee, R. Probability Matching Priors: Higher Order Asymptotics; Springer: New York, NY, USA, 2004. [Google Scholar]
- Welch, B.; Peers, H.W. On formulae for confidence points based on integrals of weighted likelihoods. J. R. Stat. Soc. Ser. B
**1963**, 25, 318–329. [Google Scholar] [CrossRef] - Ghosh, M. Objective priors: an introduction for frequentists. J. Stat. Sci.
**2011**, 26, 187–202. [Google Scholar] [CrossRef] - Mukerjee, R.; Dey, D.K. Frequentist validity of posterior quantiles in the presence of a nuisance parameter: Higher order asymptotics. Biometrika
**1993**, 80, 499–505. [Google Scholar] [CrossRef] - Mukerjee, R.; Ghosh, M. Second-order probability matching priors. Biometrika
**1997**, 84, 970–975. [Google Scholar] [CrossRef] - Liseo, B.; Loperfido, N. A note on reference priors for the scalar skew-normal distribution. J. Stat. Plan. Inference
**2006**, 136, 373–389. [Google Scholar] [CrossRef] - Cabras, S.; Racugno, W.; Castellanos, M.E.; Ventura, L. A matching prior for the shape parameter of the skew-normal distribution. Scand. J. Stat.
**2012**, 39, 236–247. [Google Scholar] [CrossRef] - Canale, A.; Scarpa, B. Informative Bayesian inference for the skew-normal distribution. arXiv
**2013**, arXiv:1305.3080. [Google Scholar] - Bayes, C.; Branco, E. Bayesian inference for the skewness parameter of the scalar skew-normal distribution. J. Stat. Plan. Inference
**2007**, 21, 141–163. [Google Scholar] - Chaibub Neto, E.; Branco, M.D. Bayesian Reference Analysis for Binomial Calibration Problem; Technical Report; IME-USP: São Paulo, Brazil, 2003; p. 12. [Google Scholar]
- Barndorff-Nielsen, O.E. On a formula for the distribution of the maximum likelihood estimator. Biometrika
**1983**, 70, 343–365. [Google Scholar] [CrossRef] - Pace, L.; Salvan, A.; Ventura, L. Likelihood based discrimination between separate regression models. J. Stat. Plan. Inference
**2006**, 136, 3539–3553. [Google Scholar] [CrossRef] [Green Version] - Ventura, L.; Cabras, S.; Racugno, W. Prior distributions from pseudo-likelihoods in the presence of nuisance parameters. J. Am. Stat. Assoc.
**2009**, 104, 768–774. [Google Scholar] [CrossRef] - Arellano-Valle, R.B.; Azzalini, A. On the unification of families of skew-normal distributions. Scand. J. Stat.
**2006**, 33, 561–574. [Google Scholar] [CrossRef] - Canale, A.; Pagui, E.C.K.; Scarpa, B. Bayesian modelling of university first-year students’ grades after placement test. J. Appl. Stat.
**2016**, 43, 3015–3029. [Google Scholar] [CrossRef] - Chib, S.; Jeliazkov, I. Marginal likelihood from the Metropolis-Hastings output. J. Am. Stat. Assoc.
**2001**, 96, 270–291. [Google Scholar] [CrossRef] [Green Version] - Naranjo, L.; Perez, C.J.; Martin, J. Bayesian analysis of a skewed exponential power distribution. In Proceedings of the Computational Statistics 2012, Limassol, Cyprus, 27–31 August 2012; Colubi, A., Ed.; Physica-Verlag (Springer) Publishing: Heidelberg, Germany, 2012; pp. 641–652. [Google Scholar]
- Hossianzadeh, A.; Zare, K. Bayesian analysis of discrete skewed Laplace distribution. J. Mod. Appl. Stat. Methods
**2016**, 15, 696–702. [Google Scholar] [CrossRef] [Green Version] - Fernàndez, C.; Steel, M.F.J. Multivariate Student t regression models: pitfalls and inference. Biometrika
**1999**, 86, 153–167. [Google Scholar] [CrossRef] - Sartori, N. Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions. J. Stat. Plan. Inference
**2008**, 136, 4259–4275. [Google Scholar] [CrossRef] - Branco, E.; Genton, M.; Liseo, B. Objective Bayesian analysis of skew-t distributions. Scand. J. Stat.
**2012**, 40, 63–85. [Google Scholar] [CrossRef] - Rubio, F.J.; Liseo, B. On the independence Jeffreys prior for skew-symmetric models. Stat. Probab. Lett.
**2014**, 85, 91–97. [Google Scholar] [CrossRef] [Green Version] - Dette, H.; Ley, C.; Rubio, F.J. Natural (non-)informative priors for skew-symmetric distributions. Scand. J. Stat.
**2018**, 45, 405–420. [Google Scholar] [CrossRef] [Green Version] - Rubio, F.J.; Steel, J.M. Bayesian modelling of skewness and kurtosis with two-piece scale and shape distributions. Electron. J. Stat.
**2015**, 9, 1884–1912. [Google Scholar] [CrossRef] - Rubio, F.J.; Genton, M. Bayesian linear regression with skew-symmetric error distributions with applications to survival analysis. Stat. Med.
**2016**, 35, 2441–2454. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Liseo, B.; Parisi, A. Bayesian inference for the multivariate skew-normal model: A population Monte Carlo approach. Comput. Stat. Data Anal.
**2013**, 63, 125–138. [Google Scholar] [CrossRef] [Green Version] - Parisi, A.; Liseo, B. Objective Bayesian analysis for the multivariate skew-t model. Stat. Methods Appl.
**2017**, 27, 277–295. [Google Scholar] [CrossRef] [Green Version] - Panagiotelisa, A.; Smith, M. Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions. Int. J. Forecast.
**2008**, 24, 710–727. [Google Scholar] [CrossRef] - Frühwirth-Schnatter, S.; Pyne, S. Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Biostatistics
**2010**, 11, 317–336. [Google Scholar] [CrossRef] [Green Version] - Sahu, S.K.; Dey, D.K.; Branco, M.D. A new class of multivariate skew distributions with applications to Bayesian regression models. Can. J. Stat.
**2003**, 31, 129–150. [Google Scholar] [CrossRef] [Green Version] - Arellano-Valle, R.B.; Bolfarine, H.; Lachos, V.H. Bayesian inference for skew-normal linear mixed models. J. Appl. Stat.
**2007**, 34, 663–682. [Google Scholar] [CrossRef] - Samworth, R.J. Recent progress in log-concave density estimation. Stat. Sci.
**2018**, 33, 493–509. [Google Scholar] [CrossRef] [Green Version] - Liseo, B.; Petrella, L.; Salinetti, G. Block unimodality for multivariate Bayesian robustness. J. Ital. Stat. Soc.
**1993**, 2, 55–71. [Google Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ghaderinezhad, F.; Ley, C.; Loperfido, N.
Bayesian Inference for Skew-Symmetric Distributions. *Symmetry* **2020**, *12*, 491.
https://doi.org/10.3390/sym12040491

**AMA Style**

Ghaderinezhad F, Ley C, Loperfido N.
Bayesian Inference for Skew-Symmetric Distributions. *Symmetry*. 2020; 12(4):491.
https://doi.org/10.3390/sym12040491

**Chicago/Turabian Style**

Ghaderinezhad, Fatemeh, Christophe Ley, and Nicola Loperfido.
2020. "Bayesian Inference for Skew-Symmetric Distributions" *Symmetry* 12, no. 4: 491.
https://doi.org/10.3390/sym12040491