On (p,q)-Sumudu and (p,q)-Laplace Transforms of the Basic Analogue of Aleph-Function
Abstract
:1. Introduction
2. The -Analogue of Aleph-Function
3. -Sumudu Transforms of First and Second Kind of the Analogue of ℵ-Function
3.1. -Sumudu Transform of First and Second Kind for
3.2. -Laplace Transform of First and Second Kind for
4. Results and Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Watugala, G.K. Sumudu transform: A new integral transform to solve differential equations and control engineering problems. Math. Engrgy Ind. 1998, 6, 319–329. [Google Scholar] [CrossRef]
- Watugala, G.K. Sumudu Transform: A new integral transform to solve differential equations and control engineering problems. Integr. Educ. 1993, 24, 35–43. [Google Scholar] [CrossRef]
- Asiru, M.A. Sumudu transform and the solution of integral equations of convolution type. Int. J. Math. Educ. Sci. Technol. 2001, 32, 906–910. [Google Scholar] [CrossRef]
- Belgacem, F.B.M.; Karaballi, A.A.; Kalla, S.L. Analytical investigations of the Sumudu transform and applications to integral production equations. Math. Probl. Eng. 2003, 3, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.K.; Ram, J.; Kumar, D. Alternative Derivation of generalized fractional kinetic equations. J. Fract. Calc. Appl. 2013, 4, 322–334. [Google Scholar]
- Brahim, K.; Raihi, L. Two dimensional Mellin transform in quantum calculus. Acta Math. Sci. 2018, 38, 546–560. [Google Scholar] [CrossRef]
- Abu-Risha, M.H.; Annaby, M.H.; Ismail, M.E.H.; Mansour, Z.S. Linear q-difference equations. Z. Anal. Anwend. 2007, 26, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Bangerezako, G. Variational calculus on q-nonuniform lattices. J. Math. Anal. Appl. 2005, 306, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Koelink, E. Quantum Groups and q-Special Functions, Report 96–10; Universiteit van Amsterdam: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Sudland, N.; Baumann, B.; Nonnenmacher, T.F. Who knows about the Aleph-function? Fract. Calc. Appl. Anal. 1998, 1, 401–402. [Google Scholar]
- Saxena, V.P. The I-Function; Anamaya Publishers: New Delhi, India, 2008. [Google Scholar]
- Saxena, R.K.; Pogany, T.K. On fractional integration formulae for Aleph functions. Appl. Math. Comput. 2011, 218, 985–990. [Google Scholar] [CrossRef]
- Sudland, N.; Baumann, B.; Nonnenmacher, T.F. Fractional driftless Fokker–Planck equation with power law diffusion coefficients. In Computer Algebra in Scientific Computing (CASC Konstanz 2001); Gangha, V.G., Mayr, E.W., Vorozhtsov, W.G., Eds.; Springer: Berlin, Germany, 2001; pp. 513–525. [Google Scholar]
- Ahmad, A.; Ahmad, F.; Tripath, S.K. Application of Sumudu Transform in Two-Parameter Fractional Telegraph Equation. Appl. Math. Inf. Sci. Lett. 2016, 3, 1–9. [Google Scholar] [CrossRef]
- Ahmad, A.; Jain, R.; Jain, D.K.; Ahmad, F. The Classical Sumudu Transform and its q-Image Involving Mittag-Leffler Function. Rev. Investig. Oper. 2018, 39, 545–548. [Google Scholar]
- Ahmad, A.; Jain, R.; Jain, D.K.; Ahmad, F. The Classical Sumudu Transform and its q-Image of the Most Generalized Hypergeometric and Wright-Type Hypergeometric functions. Int. J. Recent Innov. Trends Comput. Commun. 2017, 5, 405–413. [Google Scholar]
- Ahmad, A.; Jain, R.; Jain, D.K. q-Analogue of Aleph-function and its Transformation Formulae with q-Derivative. J. Stat. Appl. Probab. 2017, 6, 1–9. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A: Math. Gen. 1991, 24, L711. [Google Scholar] [CrossRef]
- Odzijewicz, A. Quantum algebraa and q-special functions related to coherent states maps of the disc. Commun. Math. Phys. 1998, 192, 183–215. [Google Scholar] [CrossRef]
- Saxena, R.K.; Pogany, T.K. Mathieu-type Series for the ℵ-function occurring in Fokker–Planck Equation. EJPAM 2010, 3, 980–988. [Google Scholar]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Kac, V.G.; Sole, A.D. On Integral representations of q-gamma and q-beta functions. Rend. Mat. Acc. Lincei 2005, 9, 11–29. [Google Scholar]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. arXiv 2013, arXiv:1309.3934. [Google Scholar]
- Sadjang, P.N. On the (p,q)-Gamma and the (p,q)-Beta functions. arXiv 2015, arXiv:1506.07394v1. [Google Scholar]
- Sadjang, P.N. On two (p,q)-Analogues of the Laplace Transform. arXiv 2017, arXiv:1703.01906v1. [Google Scholar]
- Hahn, W. Beitrage Zur Theorie der Heineshan Reihen. Die 24 integrale der hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation. Math. Nachrichten 1949, 2, 340–379. [Google Scholar] [CrossRef]
- Purohit, S.D.; Yadav, R.K. On q-Laplace transforms of certain q-hypergeometric polynomials. Proc. Natl. Acad. Sci. India 2006, III, 235–242. [Google Scholar]
- Purohit, S.D.; Yadav, R.K.; Vyas, V.K. On applications of q-Laplace transforms to a basic analogue of the I-function. Rev. Bull. Calcutta Math Soc. 2010. [Google Scholar]
- Albayrak, D.; Purohit, S.D.; Ucar, F. On q-analogues of Sumudu transform. Analele Univ. “Ovidius”-Constanta-Ser. Mat. 2013, 21, 239–259. [Google Scholar] [CrossRef] [Green Version]
- Sadjang, P.N. On (p,q)-analogues of the Sumudu transform. arXiv 2019, arXiv:submit/2592285. [Google Scholar]
- Dutta, B.K.; Arora, L.K. On a Basic Analogue of Generalized H-function. Int. J. Math. Engg. Sci. 2011, 1, 21–30. [Google Scholar]
- Jain, D.K.; Jain, R.; Ahmad, F. Some Transformation Formula for Basic Analogue of I-function. Asian J. Math. Stat. 2012, 5, 158–162. [Google Scholar]
- Saxena, R.K.; Modi, G.C.; Kalla, S.L. A basic analogue of Fox’s H-function. Rev. Tecn. Fac. Ingr. Univ. Zullia 1983, 6, 139–143. [Google Scholar]
- Saxena, R.K.; Rajendra, K. Basic analogue of the Generalized H-function. Le Math. 1995, 50, 263–271. [Google Scholar]
- Jain, A.; Bhat, A.A.; Jain, R.; Jain, D.K. Certain Results of (p,q)-analogue of Aleph-function with (p,q)-Derivative. Communicated 2019. [Google Scholar] [CrossRef]
- Ahmad, A.; Jain, R.; Jain, D.K. Certain Results of (p,q)-analogue of I-Function with (p,q)-Derivative. In Proceedings of the MSSCID-2017, 20th Annual Conference of VPI, Jaipur, India, 24–26 November 2017. [Google Scholar]
- Pathak, S.; Jain, R. Some identities involving (p,q)-analogue of Meijer’s G-function. J. Indian Acad. Math. Indore. 2017, 39, 137–146. [Google Scholar]
- Ahmad, A.; Jain, R.; Jain, D.K. q-Sumudu and q-Laplace Transforms of the basic analogue of Aleph-Function. Far East J. Math. Sci. 2019, 118, 189–211. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Saxena, R.K.; Ram, J.; Kumar, D. Sumudu and Laplace Transforms of the Aleph-Function. Casp. J. Appl. Math. Ecol. Econ. 2013, 1, 19–28. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassaddiq, A.; Bhat, A.A.; Jain, D.K.; Ali, F. On (p,q)-Sumudu and (p,q)-Laplace Transforms of the Basic Analogue of Aleph-Function. Symmetry 2020, 12, 390. https://doi.org/10.3390/sym12030390
Tassaddiq A, Bhat AA, Jain DK, Ali F. On (p,q)-Sumudu and (p,q)-Laplace Transforms of the Basic Analogue of Aleph-Function. Symmetry. 2020; 12(3):390. https://doi.org/10.3390/sym12030390
Chicago/Turabian StyleTassaddiq, Asifa, Altaf Ahmad Bhat, D. K. Jain, and Farhad Ali. 2020. "On (p,q)-Sumudu and (p,q)-Laplace Transforms of the Basic Analogue of Aleph-Function" Symmetry 12, no. 3: 390. https://doi.org/10.3390/sym12030390