Algebraic Bethe Ansatz for the Trigonometric sℓ(2) Gaudin Model with Triangular Boundary
Abstract
:1. Introduction
2. Trigonometric Gaudin Model with Boundary
3. Algebraic Bethe Ansatz
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Commutativity of the Generating Function
Appendix B. Bethe Vector φ3(μ1,μ2,μ3)
References
- Gaudin, M. Diagonalisation d’une classe d’hamiltoniens de spin. J. Phys. 1976, 37, 1087–1098. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, G.; Somma, R.; Dukelsky, J.; Rombouts, S. Exactly-solvable models derived from a generalized Gaudin algebra. Nuclear Phys. B 2005, 707, 421–457. [Google Scholar] [CrossRef] [Green Version]
- Feigin, B.; Frenkel, E.; Reshetikhin, N. Gaudin model, Bethe ansatz and correlation functions at the critical level. Commun. Math. Phys. 1994, 166, 27–62. [Google Scholar] [CrossRef] [Green Version]
- Mironov, A.; Morozov, A.; Runov, B.; Zenkevich, Y.; Zotov, A. Spectral Duality between Heisenberg Chain and Gaudin Model. Lett. Math. Phys. 2013, 103, 299–329. [Google Scholar] [CrossRef] [Green Version]
- Delduc, F.; Lacroix, S.; Magro, M.; Vicedo, B. Assembling integrable sigma-models as affine Gaudin models. J. High Energy Phys. 2019, 2019, 17. [Google Scholar] [CrossRef] [Green Version]
- Gaudin, M. La Fonction D’onde de Bethe; Masson: Paris, France, 1983. [Google Scholar]
- Gaudin, M. The Bethe Wavefunction; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Takhtajan, L.A.; Faddeev, L.D. The quantum method for the inverse problem and the XYZ Heisenberg model. Uspekhi Mat. Nauk 1979, 34, 13–63. translation in Russ. Math. Surv. 1979, 34, 11–68. (In Russian) [Google Scholar] [CrossRef]
- Kulish, P.P.; Sklyanin, E.K. Quantum spectral transform method. Recent developments. Lect. Notes Phys. 1982, 151, 61–119. [Google Scholar]
- Sklyanin, E.K. Separation of variables in the Gaudin model. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1987, 164, 151–169, translation in J. Soviet Math. 1989, 47, 2473–2488. [Google Scholar] [CrossRef]
- Sklyanin, E.K.; Takebe, T. Algebraic Bethe ansatz for the XYZ Gaudin model. Phys. Lett. A 1996, 219, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Semenov-Tian-Shansky, M.A. Quantum and classical integrable systems. Integr. Nonlinear Syst. 1997, 495, 314–377. [Google Scholar]
- Jurčo, B. Classical Yang-Baxter equations and quantum integrable systems. J. Math. Phys. 1989, 30, 1289–1293. [Google Scholar] [CrossRef]
- Jurčo, B. Classical Yang-Baxter equations and quantum integrable systems (Gaudin models). Lect. Notes Phys. 1990, 370, 219–227. [Google Scholar]
- Babujian, H.M.; Flume, R. Off-shell Bethe ansatz equation for Gaudin magnets and solutions of Knizhnik-Zamolodchikov equations. Mod. Phys. Lett. A 1994, 9, 2029–2039. [Google Scholar] [CrossRef] [Green Version]
- Reshetikhin, N.; Varchenko, A. Quasiclassical asymptotics of solutions to the KZ equations. In Geometry, Topology and Physics. Conf. Proc. Lecture Notes Geom. Topology IV; Internat. Press: Cambridge, MA, USA, 1995; pp. 293–322. [Google Scholar]
- Wagner, F.; Macfarlane, A.J. Solvable Gaudin models for higher rank symplectic algebras. Quantum groups and integrable systems (Prague, 2000). Czechoslovak J. Phys. 2000, 50, 1371–1377. [Google Scholar] [CrossRef]
- Brzezinski, T.; Macfarlane, A.J. On integrable models related to the osp(1,2) Gaudin algebra. J. Math. Phys. 1994, 35, 3261–3272. [Google Scholar] [CrossRef] [Green Version]
- Kulish, P.P.; Manojlović, N. Creation operators and Bethe vectors of the osp(1|2) Gaudin model. J. Math. Phys. 2001, 42, 4757–4778. [Google Scholar] [CrossRef] [Green Version]
- Kulish, P.P.; Manojlović, N. Trigonometric osp(1|2) Gaudin model. J. Math. Phys. 2003, 44, 676–700. [Google Scholar] [CrossRef] [Green Version]
- Lima-Santos, A.; Utiel, W. Off-shell Bethe ansatz equation for osp(2|1) Gaudin magnets. Nucl. Phys. B 2001, 600, 512–530. [Google Scholar] [CrossRef] [Green Version]
- Kurak, V.; Lima-Santos, A. sl(2|1)(2) Gaudin magnet and its associated Knizhnik-Zamolodchikov equation. Nuclear Phys. B 2004, 701, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Hikami, K.; Kulish, P.P.; Wadati, M. Integrable Spin Systems with Long-Range Interaction. Chaos Solitons Fractals 1992, 2, 543–550. [Google Scholar] [CrossRef]
- Hikami, K.; Kulish, P.P.; Wadati, M. Construction of Integrable Spin Systems with Long-Range Interaction. J. Phys. Soc. Jpn. 1992, 61, 3071–3076. [Google Scholar] [CrossRef]
- Hikami, K. Gaudin magnet with boundary and generalized Knizhnik-Zamolodchikov equation. J. Phys. A Math. Gen. 1995, 28, 4997–5007. [Google Scholar] [CrossRef]
- Lima-Santos, A. The sl(2|1)(2) Gaudin magnet with diagonal boundary terms. J. Stat. Mech. 2009. [Google Scholar] [CrossRef]
- Yang, W.L.; Sasaki, R.; Zhang, Y.Z. elliptic Gaudin model with open boundaries. J. High Energy Phys. 2004, 9, 046. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.L.; Sasaki, R.; Zhang, Y.Z. An−1 Gaudin model with open boundaries. Nuclear Phys. B 2005, 729, 594–610. [Google Scholar] [CrossRef] [Green Version]
- Hao, K.; Yang, W.-L.; Fan, H.; Liu, S.Y.; Wu, K.; Yang, Z.Y.; Zhang, Y.Z. Determinant representations for scalar products of the XXZ Gaudin model with general boundary terms. Nuclear Phys. B 2012, 862, 835–849. [Google Scholar] [CrossRef] [Green Version]
- Sklyanin, E.K. Boundary conditions for integrable equations. Funktsional. Anal. Prilozhen. 1987, 21, 86–87. translation in Funct. Anal. Its Appl. 1987, 21, 164–166. (In Russian) [Google Scholar] [CrossRef]
- Sklyanin, E.K. Boundary conditions for integrable systems. In Proceedings of the VIIIth International Congress on Mathematical Physics, Marseille, France, 16–25 July 1986; World Sci. Publishing: Singapore, 1987; pp. 402–408. [Google Scholar]
- Sklyanin, E.K. Boundary conditions for integrable quantum systems. J. Phys. A Math. Gen. 1988, 21, 2375–2389. [Google Scholar] [CrossRef]
- Skrypnyk, T. Non-skew-symmetric classical r-matrix, algebraic Bethe ansatz, and Bardeen-Cooper-Schrieffer-type integrable systems. J. Math. Phys. 2009, 50, 033540. [Google Scholar] [CrossRef]
- Skrypnyk, T. “Z2-graded” Gaudin models and analytical Bethe ansatz. Nuclear Phys. B 2013, 870, 495–529. [Google Scholar] [CrossRef]
- Cirilo António, N.; Manojlović, N.; Nagy, Z. Trigonometric sℓ(2) Gaudin model with boundary terms. Rev. Math. Phys. 2013, 25, 1343004. [Google Scholar] [CrossRef]
- Cao, J.; Lin, H.; Shi, K.; Wang, Y. Exact solutions and elementary excitations in the XXZ spin chain with unparallel boundary fields. Nucl. Phys. B 2003, 663, 487–519. [Google Scholar] [CrossRef]
- Nepomechie, R.I. Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms. J. Phys. A 2004, 37, 433–440. [Google Scholar] [CrossRef]
- Arnaudon, D.; Doikou, A.; Frappat, L.; Ragoucy, E.; Crampé, N. Analytical Bethe ansatz in gl(N) spin chains. Czechoslovak J. Phys. 2006, 56, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Melo, C.S.; Ribeiro, G.A.P.; Martins, M.J. Bethe ansatz for the XXX-S chain with non-diagonal open boundaries. Nuclear Phys. B 2005, 711, 565–603. [Google Scholar] [CrossRef] [Green Version]
- Frappat, L.; Nepomechie, R.I.; Ragoucy, E. A complete Bethe ansatz solution for the open spin-s XXZ chain with general integrable boundary terms. J. Stat. Mech. 2007, 2007, P09009. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Yang, W.-L.; Shi, K.; Wang, Y. Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions. Nuclear Phys. B 2013, 875, 152–165. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Yang, W.-L.; Shi, K.; Wang, Y. Off-diagonal Bethe ansatz solutions of the anisotropic spin-1/2 chains with arbitrary boundary fields. Nuclear Phys. B 2013, 877, 152–175. [Google Scholar] [CrossRef] [Green Version]
- Ragoucy, E. Coordinate Bethe ansätze for non-diagonal boundaries. Rev. Math. Phys. 2013, 25, 1343007. [Google Scholar] [CrossRef] [Green Version]
- Belliard, S.; Crampé, N.; Ragoucy, E. Algebraic Bethe ansatz for open XXX model with triangular boundary matrices. Lett. Math. Phys. 2013, 103, 493–506. [Google Scholar] [CrossRef] [Green Version]
- Belliard, S.; Crampé, N. Heisenberg XXX model with general boundaries: Eigenvectors from algebraic Bethe ansatz. SIGMA Symm. Integr. Geom. Methods Appl. 2013, 9, 072. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, R.A.; Lima-Santos, A. Algebraic Bethe ansatz for the six vertex model with upper triangular K-matrices. J. Phys. A 2013, 46, 455002. [Google Scholar] [CrossRef] [Green Version]
- Belliard, S. Modified algebraic Bethe ansatz for XXZ chain on the segment—I: Triangular cases. Nuclear Phys. B 2015, 892, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Belliard, S.; Pimenta, R.A. Modified algebraic Bethe ansatz for XXZ chain on the segment—II—General cases. Nuclear Phys. B 2015, 894, 527–552. [Google Scholar] [CrossRef] [Green Version]
- Avan, J.; Belliard, S.; Grosjean, N.; Pimenta, R.A. Modified algebraic Bethe ansatz for XXZ chain on the segment—III—Proof. Nuclear Phys. B 2015, 899, 229–246. [Google Scholar] [CrossRef] [Green Version]
- Gainutdinov, A.M.; Nepomechie, R.I. Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity. Nuclear Phys. B 2016, 909, 796–839. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, Y.-Y.; Cao, J.; Yang, W.-L.; Shi, K.; Wang, Y. Bethe states of the XXZ spin- chain with arbitrary boundary fields. Nuclear Phys. B 2015, 893, 70–88. [Google Scholar] [CrossRef] [Green Version]
- Cirilo António, N.; Manojlović, N.; Salom, I. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model. Nuclear Phys. B 2014, 889, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Manojlović, N.; Salom, I. Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model. Nuclear Phys. B 2017, 923, 73–106. [Google Scholar] [CrossRef]
- Lukyanenko, I.; Isaac, P.S.; Links, J. On the boundaries of quantum integrability for the spin-1/2 Richardson-Gaudin system. Nuclear Phys. B 2014, 886, 364–398. [Google Scholar] [CrossRef] [Green Version]
- Cirilo António, N.; Manojlović, N.; Ragoucy, E.; Salom, I. Algebraic Bethe ansatz for the sℓ(2) Gaudin model with boundary. Nuclear Phys. B 2015, 893, 305–331. [Google Scholar] [CrossRef] [Green Version]
- Hao, K.; Cao, J.; Yang, T.; Yang, W.-L. Exact solution of the XXX Gaudin model with the generic open boundaries. Ann. Phys. 2015, 354, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Manojlović, N.; Nagy, Z.; Salom, I. Derivation of the trigonometric Gaudin Hamiltonians. In Proceedings of the 8th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical Physics, Belgrade, Serbia, 24–31 August 2014; Institute of Physics: Belgrade, Serbia, 2015; pp. 127–135. [Google Scholar]
- De Vega, H.J.; González Ruiz, A. Boundary K-matrices for the XYZ, XXZ, XXX spin chains. J. Phys. A Math. Gen. 1994, 27, 6129–6137. [Google Scholar] [CrossRef]
- Ghoshal, S.; Zamolodchikov, A.B. Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory. Int. J. Modern Phys. A 1994, 9, 3841–3885, Errata in 1994, 9, 4353. [Google Scholar] [CrossRef]
- Salom, I.; Manojlović, N.; Cirilo António, N. Generalized sℓ(2) Gaudin algebra and corresponding Knizhnik-Zamolodchikov equation. Nuclear Phys. B 2019, 939, 358–371. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manojlović, N.; Salom, I. Algebraic Bethe Ansatz for the Trigonometric sℓ(2) Gaudin Model with Triangular Boundary. Symmetry 2020, 12, 352. https://doi.org/10.3390/sym12030352
Manojlović N, Salom I. Algebraic Bethe Ansatz for the Trigonometric sℓ(2) Gaudin Model with Triangular Boundary. Symmetry. 2020; 12(3):352. https://doi.org/10.3390/sym12030352
Chicago/Turabian StyleManojlović, Nenad, and Igor Salom. 2020. "Algebraic Bethe Ansatz for the Trigonometric sℓ(2) Gaudin Model with Triangular Boundary" Symmetry 12, no. 3: 352. https://doi.org/10.3390/sym12030352