# Algebraic Bethe Ansatz for the Trigonometric sℓ(2) Gaudin Model with Triangular Boundary

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Trigonometric Gaudin Model with Boundary

## 3. Algebraic Bethe Ansatz

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A. Commutativity of the Generating Function

## Appendix B. Bethe Vector φ_{3}(μ_{1},μ_{2},μ_{3})

## References

- Gaudin, M. Diagonalisation d’une classe d’hamiltoniens de spin. J. Phys.
**1976**, 37, 1087–1098. [Google Scholar] [CrossRef][Green Version] - Ortiz, G.; Somma, R.; Dukelsky, J.; Rombouts, S. Exactly-solvable models derived from a generalized Gaudin algebra. Nuclear Phys. B
**2005**, 707, 421–457. [Google Scholar] [CrossRef][Green Version] - Feigin, B.; Frenkel, E.; Reshetikhin, N. Gaudin model, Bethe ansatz and correlation functions at the critical level. Commun. Math. Phys.
**1994**, 166, 27–62. [Google Scholar] [CrossRef][Green Version] - Mironov, A.; Morozov, A.; Runov, B.; Zenkevich, Y.; Zotov, A. Spectral Duality between Heisenberg Chain and Gaudin Model. Lett. Math. Phys.
**2013**, 103, 299–329. [Google Scholar] [CrossRef][Green Version] - Delduc, F.; Lacroix, S.; Magro, M.; Vicedo, B. Assembling integrable sigma-models as affine Gaudin models. J. High Energy Phys.
**2019**, 2019, 17. [Google Scholar] [CrossRef][Green Version] - Gaudin, M. La Fonction D’onde de Bethe; Masson: Paris, France, 1983. [Google Scholar]
- Gaudin, M. The Bethe Wavefunction; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Takhtajan, L.A.; Faddeev, L.D. The quantum method for the inverse problem and the XYZ Heisenberg model. Uspekhi Mat. Nauk
**1979**, 34, 13–63. translation in Russ. Math. Surv.**1979**, 34, 11–68. (In Russian) [Google Scholar] [CrossRef] - Kulish, P.P.; Sklyanin, E.K. Quantum spectral transform method. Recent developments. Lect. Notes Phys.
**1982**, 151, 61–119. [Google Scholar] - Sklyanin, E.K. Separation of variables in the Gaudin model. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
**1987**, 164, 151–169, translation in J. Soviet Math.**1989**, 47, 2473–2488. [Google Scholar] [CrossRef] - Sklyanin, E.K.; Takebe, T. Algebraic Bethe ansatz for the XYZ Gaudin model. Phys. Lett. A
**1996**, 219, 217–225. [Google Scholar] [CrossRef][Green Version] - Semenov-Tian-Shansky, M.A. Quantum and classical integrable systems. Integr. Nonlinear Syst.
**1997**, 495, 314–377. [Google Scholar] - Jurčo, B. Classical Yang-Baxter equations and quantum integrable systems. J. Math. Phys.
**1989**, 30, 1289–1293. [Google Scholar] [CrossRef] - Jurčo, B. Classical Yang-Baxter equations and quantum integrable systems (Gaudin models). Lect. Notes Phys.
**1990**, 370, 219–227. [Google Scholar] - Babujian, H.M.; Flume, R. Off-shell Bethe ansatz equation for Gaudin magnets and solutions of Knizhnik-Zamolodchikov equations. Mod. Phys. Lett. A
**1994**, 9, 2029–2039. [Google Scholar] [CrossRef][Green Version] - Reshetikhin, N.; Varchenko, A. Quasiclassical asymptotics of solutions to the KZ equations. In Geometry, Topology and Physics. Conf. Proc. Lecture Notes Geom. Topology IV; Internat. Press: Cambridge, MA, USA, 1995; pp. 293–322. [Google Scholar]
- Wagner, F.; Macfarlane, A.J. Solvable Gaudin models for higher rank symplectic algebras. Quantum groups and integrable systems (Prague, 2000). Czechoslovak J. Phys.
**2000**, 50, 1371–1377. [Google Scholar] [CrossRef] - Brzezinski, T.; Macfarlane, A.J. On integrable models related to the osp(1,2) Gaudin algebra. J. Math. Phys.
**1994**, 35, 3261–3272. [Google Scholar] [CrossRef][Green Version] - Kulish, P.P.; Manojlović, N. Creation operators and Bethe vectors of the osp(1|2) Gaudin model. J. Math. Phys.
**2001**, 42, 4757–4778. [Google Scholar] [CrossRef][Green Version] - Kulish, P.P.; Manojlović, N. Trigonometric osp(1|2) Gaudin model. J. Math. Phys.
**2003**, 44, 676–700. [Google Scholar] [CrossRef][Green Version] - Lima-Santos, A.; Utiel, W. Off-shell Bethe ansatz equation for osp(2|1) Gaudin magnets. Nucl. Phys. B
**2001**, 600, 512–530. [Google Scholar] [CrossRef][Green Version] - Kurak, V.; Lima-Santos, A. sl(2|1)
^{(2)}Gaudin magnet and its associated Knizhnik-Zamolodchikov equation. Nuclear Phys. B**2004**, 701, 497–515. [Google Scholar] [CrossRef][Green Version] - Hikami, K.; Kulish, P.P.; Wadati, M. Integrable Spin Systems with Long-Range Interaction. Chaos Solitons Fractals
**1992**, 2, 543–550. [Google Scholar] [CrossRef] - Hikami, K.; Kulish, P.P.; Wadati, M. Construction of Integrable Spin Systems with Long-Range Interaction. J. Phys. Soc. Jpn.
**1992**, 61, 3071–3076. [Google Scholar] [CrossRef] - Hikami, K. Gaudin magnet with boundary and generalized Knizhnik-Zamolodchikov equation. J. Phys. A Math. Gen.
**1995**, 28, 4997–5007. [Google Scholar] [CrossRef] - Lima-Santos, A. The sl(2|1)
^{(2)}Gaudin magnet with diagonal boundary terms. J. Stat. Mech.**2009**. [Google Scholar] [CrossRef] - Yang, W.L.; Sasaki, R.; Zhang, Y.Z. ${\mathbb{Z}}_{n}$ elliptic Gaudin model with open boundaries. J. High Energy Phys.
**2004**, 9, 046. [Google Scholar] [CrossRef][Green Version] - Yang, W.L.; Sasaki, R.; Zhang, Y.Z. A
_{n−1}Gaudin model with open boundaries. Nuclear Phys. B**2005**, 729, 594–610. [Google Scholar] [CrossRef][Green Version] - Hao, K.; Yang, W.-L.; Fan, H.; Liu, S.Y.; Wu, K.; Yang, Z.Y.; Zhang, Y.Z. Determinant representations for scalar products of the XXZ Gaudin model with general boundary terms. Nuclear Phys. B
**2012**, 862, 835–849. [Google Scholar] [CrossRef][Green Version] - Sklyanin, E.K. Boundary conditions for integrable equations. Funktsional. Anal. Prilozhen.
**1987**, 21, 86–87. translation in Funct. Anal. Its Appl.**1987**, 21, 164–166. (In Russian) [Google Scholar] [CrossRef] - Sklyanin, E.K. Boundary conditions for integrable systems. In Proceedings of the VIIIth International Congress on Mathematical Physics, Marseille, France, 16–25 July 1986; World Sci. Publishing: Singapore, 1987; pp. 402–408. [Google Scholar]
- Sklyanin, E.K. Boundary conditions for integrable quantum systems. J. Phys. A Math. Gen.
**1988**, 21, 2375–2389. [Google Scholar] [CrossRef] - Skrypnyk, T. Non-skew-symmetric classical r-matrix, algebraic Bethe ansatz, and Bardeen-Cooper-Schrieffer-type integrable systems. J. Math. Phys.
**2009**, 50, 033540. [Google Scholar] [CrossRef] - Skrypnyk, T. “Z2-graded” Gaudin models and analytical Bethe ansatz. Nuclear Phys. B
**2013**, 870, 495–529. [Google Scholar] [CrossRef] - Cirilo António, N.; Manojlović, N.; Nagy, Z. Trigonometric sℓ(2) Gaudin model with boundary terms. Rev. Math. Phys.
**2013**, 25, 1343004. [Google Scholar] [CrossRef] - Cao, J.; Lin, H.; Shi, K.; Wang, Y. Exact solutions and elementary excitations in the XXZ spin chain with unparallel boundary fields. Nucl. Phys. B
**2003**, 663, 487–519. [Google Scholar] [CrossRef] - Nepomechie, R.I. Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms. J. Phys. A
**2004**, 37, 433–440. [Google Scholar] [CrossRef] - Arnaudon, D.; Doikou, A.; Frappat, L.; Ragoucy, E.; Crampé, N. Analytical Bethe ansatz in gl(N) spin chains. Czechoslovak J. Phys.
**2006**, 56, 141–148. [Google Scholar] [CrossRef][Green Version] - Melo, C.S.; Ribeiro, G.A.P.; Martins, M.J. Bethe ansatz for the XXX-S chain with non-diagonal open boundaries. Nuclear Phys. B
**2005**, 711, 565–603. [Google Scholar] [CrossRef][Green Version] - Frappat, L.; Nepomechie, R.I.; Ragoucy, E. A complete Bethe ansatz solution for the open spin-s XXZ chain with general integrable boundary terms. J. Stat. Mech.
**2007**, 2007, P09009. [Google Scholar] [CrossRef][Green Version] - Cao, J.; Yang, W.-L.; Shi, K.; Wang, Y. Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions. Nuclear Phys. B
**2013**, 875, 152–165. [Google Scholar] [CrossRef][Green Version] - Cao, J.; Yang, W.-L.; Shi, K.; Wang, Y. Off-diagonal Bethe ansatz solutions of the anisotropic spin-1/2 chains with arbitrary boundary fields. Nuclear Phys. B
**2013**, 877, 152–175. [Google Scholar] [CrossRef][Green Version] - Ragoucy, E. Coordinate Bethe ansätze for non-diagonal boundaries. Rev. Math. Phys.
**2013**, 25, 1343007. [Google Scholar] [CrossRef][Green Version] - Belliard, S.; Crampé, N.; Ragoucy, E. Algebraic Bethe ansatz for open XXX model with triangular boundary matrices. Lett. Math. Phys.
**2013**, 103, 493–506. [Google Scholar] [CrossRef][Green Version] - Belliard, S.; Crampé, N. Heisenberg XXX model with general boundaries: Eigenvectors from algebraic Bethe ansatz. SIGMA Symm. Integr. Geom. Methods Appl.
**2013**, 9, 072. [Google Scholar] [CrossRef][Green Version] - Pimenta, R.A.; Lima-Santos, A. Algebraic Bethe ansatz for the six vertex model with upper triangular K-matrices. J. Phys. A
**2013**, 46, 455002. [Google Scholar] [CrossRef][Green Version] - Belliard, S. Modified algebraic Bethe ansatz for XXZ chain on the segment—I: Triangular cases. Nuclear Phys. B
**2015**, 892, 1–20. [Google Scholar] [CrossRef][Green Version] - Belliard, S.; Pimenta, R.A. Modified algebraic Bethe ansatz for XXZ chain on the segment—II—General cases. Nuclear Phys. B
**2015**, 894, 527–552. [Google Scholar] [CrossRef][Green Version] - Avan, J.; Belliard, S.; Grosjean, N.; Pimenta, R.A. Modified algebraic Bethe ansatz for XXZ chain on the segment—III—Proof. Nuclear Phys. B
**2015**, 899, 229–246. [Google Scholar] [CrossRef][Green Version] - Gainutdinov, A.M.; Nepomechie, R.I. Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity. Nuclear Phys. B
**2016**, 909, 796–839. [Google Scholar] [CrossRef][Green Version] - Zhang, X.; Li, Y.-Y.; Cao, J.; Yang, W.-L.; Shi, K.; Wang, Y. Bethe states of the XXZ spin-$\frac{1}{2}$ chain with arbitrary boundary fields. Nuclear Phys. B
**2015**, 893, 70–88. [Google Scholar] [CrossRef][Green Version] - Cirilo António, N.; Manojlović, N.; Salom, I. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model. Nuclear Phys. B
**2014**, 889, 87–108. [Google Scholar] [CrossRef][Green Version] - Manojlović, N.; Salom, I. Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model. Nuclear Phys. B
**2017**, 923, 73–106. [Google Scholar] [CrossRef] - Lukyanenko, I.; Isaac, P.S.; Links, J. On the boundaries of quantum integrability for the spin-1/2 Richardson-Gaudin system. Nuclear Phys. B
**2014**, 886, 364–398. [Google Scholar] [CrossRef][Green Version] - Cirilo António, N.; Manojlović, N.; Ragoucy, E.; Salom, I. Algebraic Bethe ansatz for the sℓ(2) Gaudin model with boundary. Nuclear Phys. B
**2015**, 893, 305–331. [Google Scholar] [CrossRef][Green Version] - Hao, K.; Cao, J.; Yang, T.; Yang, W.-L. Exact solution of the XXX Gaudin model with the generic open boundaries. Ann. Phys.
**2015**, 354, 401–408. [Google Scholar] [CrossRef][Green Version] - Manojlović, N.; Nagy, Z.; Salom, I. Derivation of the trigonometric Gaudin Hamiltonians. In Proceedings of the 8th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical Physics, Belgrade, Serbia, 24–31 August 2014; Institute of Physics: Belgrade, Serbia, 2015; pp. 127–135. [Google Scholar]
- De Vega, H.J.; González Ruiz, A. Boundary K-matrices for the XYZ, XXZ, XXX spin chains. J. Phys. A Math. Gen.
**1994**, 27, 6129–6137. [Google Scholar] [CrossRef] - Ghoshal, S.; Zamolodchikov, A.B. Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory. Int. J. Modern Phys. A
**1994**, 9, 3841–3885, Errata in**1994**, 9, 4353. [Google Scholar] [CrossRef] - Salom, I.; Manojlović, N.; Cirilo António, N. Generalized sℓ(2) Gaudin algebra and corresponding Knizhnik-Zamolodchikov equation. Nuclear Phys. B
**2019**, 939, 358–371. [Google Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Manojlović, N.; Salom, I.
Algebraic Bethe Ansatz for the Trigonometric *sℓ*(2) Gaudin Model with Triangular Boundary. *Symmetry* **2020**, *12*, 352.
https://doi.org/10.3390/sym12030352

**AMA Style**

Manojlović N, Salom I.
Algebraic Bethe Ansatz for the Trigonometric *sℓ*(2) Gaudin Model with Triangular Boundary. *Symmetry*. 2020; 12(3):352.
https://doi.org/10.3390/sym12030352

**Chicago/Turabian Style**

Manojlović, Nenad, and Igor Salom.
2020. "Algebraic Bethe Ansatz for the Trigonometric *sℓ*(2) Gaudin Model with Triangular Boundary" *Symmetry* 12, no. 3: 352.
https://doi.org/10.3390/sym12030352