A Novel Secure Occupancy Monitoring Scheme Based on Multi-Chaos Mapping
Abstract
:1. Introduction
2. Background and Related Knowledge
3. The Proposed Chaos-Based Secure Occupancy Scheme
4. Experimental Test and Security Analysis
4.1. Histogram Analysis
4.2. Correlation Coefficient Analysis
4.3. Peak to Signal Noise Ratio
4.4. Mean Square Error
4.5. Entropy Analysis
4.6. Mean Absolute Error
4.7. Number of Pixel Changing Rate
4.8. Normalized Cross Correlation
4.9. Time Complexity of the Proposed System
4.10. Structural Content
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lei, M.; Lefloch, D.; Gouton, P.; Madani, K. A video-based real-time vehicle counting system using adaptive background method. In Proceedings of the 2008 IEEE International Conference on Signal Image Technology and Internet Based Systems, Bali, Indonesia, 30 November–3 December 2008; pp. 523–528. [Google Scholar]
- Lin, C.Y.; Muchtar, K.; Lin, J.Y.; Sung, Y.H.; Yeh, C.H. Moving object detection in the encrypted domain. Multimed. Tools Appl. 2017, 76, 9759–9783. [Google Scholar] [CrossRef]
- Grodi, R.; Rawat, D.B.; Rios-Gutierrez, F. Smart parking: Parking occupancy monitoring and visualization system for smart cities. In Proceedings of the IEEE SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016; pp. 1–5. [Google Scholar]
- Ahmad, J.; Larijani, H.; Emmanuel, R.; Mannion, M. Secure occupancy monitoring system for iot using lightweight intertwining logistic map. In Proceedings of the 2018 10th IEEE Computer Science and Electronic Engineering (CEEC), Colchester, UK, 19–21 September 2018; pp. 208–213. [Google Scholar]
- Pereira, P.F.; Ramos, N.M.; Almeida, R.M.; Simões, M.L. Methodology for detection of occupant actions in residential buildings using indoor environment monitoring systems. Build. Environ. 2018, 146, 107–118. [Google Scholar] [CrossRef]
- Oliveira-Lima, J.A.; Morais, R.; Martins, J.; Florea, A.; Lima, C. Load forecast on intelligent buildings based on temporary occupancy monitoring. Energy Build. 2016, 116, 512–521. [Google Scholar] [CrossRef]
- Sadeghi, A.R.; Schneider, T.; Wehrenberg, I. Efficient privacy-preserving face recognition. In International Conference on Information Security and Cryptology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 229–244. [Google Scholar]
- Sanchez, A.; Suarez, P.D.; Conci, A.; Nunes, E. Video-based distance traffic analysis: Application to vehicle tracking and counting. Comput. Sci. Eng. 2010, 13, 38–45. [Google Scholar] [CrossRef]
- Rudin, A.; Audah, L.; Jamil, A.; Abdullah, J. Occupancy monitoring system for campus sports facilities using the Internet of Things (IoT). In Proceedings of the 2016 IEEE Conference on Wireless Sensors (ICWiSE), Langkawi, Malaysia, 10–12 October 2016; pp. 100–105. [Google Scholar]
- Ahmad, H. A secure image encryption scheme based on chaotic maps and affine transformation. Multimed. Tools Appl. 2016, 75, 13951–13976. [Google Scholar] [CrossRef]
- Khan, M.; Masood, F. A novel chaotic image encryption technique based on multiple discrete dynamical maps. Multimed. Tools Appl. 2019, 78, 26203–26222. [Google Scholar] [CrossRef]
- Kaur, M.; Kumar, V. A comprehensive review on image encryption techniques. Arch. Comput. Methods Eng. 2020, 27, 15–43. [Google Scholar] [CrossRef]
- Khan, J.S.; Ahmad, J. Chaos based efficient selective image encryption. Multidimens. Syst. Signal Process. 2019, 30, 943–961. [Google Scholar] [CrossRef]
- Khan, J.; Ahmad, J.; Hwang, S.O. An efficient image encryption scheme based on: Henon map, skew tent map and S-Box. In Proceedings of the IEEE 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Istanbul, Turkey, 27–29 May 2015; pp. 1–6. [Google Scholar]
- Rehman, A.U.; Khan, J.S.; Ahmad, J.; Hwang, S.O. A new image encryption scheme based on dynamic s-boxes and chaotic maps. 3D Res. 2016, 7, 7. [Google Scholar] [CrossRef]
- Ahmad, J.; Khan, M.A.; Hwang, S.O.; Khan, J.S. A compression sensing and noise-tolerant image encryption scheme based on chaotic maps and orthogonal matrices. Neural Comput. Appl. 2017, 28, 953–967. [Google Scholar] [CrossRef]
- Khan, M.; Masood, F.; Alghafis, A.; Amin, M.; Naqvi, S.I.B. A novel image encryption technique using hybrid method of discrete dynamical chaotic maps and Brownian motion. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.M.; Khan, M. Application based construction and optimization of substitution boxes over 2D mixed chaotic maps. Int. J. Theor. Phys. 2019, 58, 3091–3117. [Google Scholar] [CrossRef]
- Khan, M.; Waseem, H.M. A novel digital contents privacy scheme based on Kramer’s arbitrary spin. Int. J. Theor. Phys. 2019, 58, 2720–2743. [Google Scholar] [CrossRef]
- Khan, M.; Munir, N. A novel image encryption technique based on generalized advanced encryption standard based on field of any characteristic. Wirel. Pers. Commun. 2019, 109, 849–867. [Google Scholar] [CrossRef]
- Waseem, H.M.; Khan, M. A new approach to digital content privacy using quantum spin and finite-state machine. Appl. Phys. B 2019, 125, 27. [Google Scholar] [CrossRef]
- Ali, K.M.; Khan, M. A new construction of confusion component of block ciphers. Multimed. Tools Appl. 2019, 78, 32585–32604. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Asghar, Z. A novel construction of substitution box for image encryption applications with Gingerbreadman chaotic map and S 8 permutation. Neural Comput. Appl. 2018, 29, 993–999. [Google Scholar] [CrossRef]
- Belazi, A.; Khan, M.; El-Latif, A.A.A.; Belghith, S. Efficient cryptosystem approaches: S-boxes and permutation–substitution-based encryption. Nonlinear Dyn. 2017, 87, 337–361. [Google Scholar] [CrossRef]
- Khan, M.; Shah, T.; Batool, S.I. A new approach for image encryption and watermarking based on substitution box over the classes of chain rings. Multimed. Tools Appl. 2017, 76, 24027–24062. [Google Scholar] [CrossRef]
- Özkaynak, F.; Çelik, V.; Özer, A.B. A new S-box construction method based on the fractional-order chaotic Chen system. Signal Image Video Process. 2017, 11, 659–664. [Google Scholar] [CrossRef]
- Özkaynak, F. Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 2018, 92, 305–313. [Google Scholar] [CrossRef]
- Özkaynak, F.; Muhamad, M.I. Alternative substitutional box structures for DES. In Proceedings of the IEEE 2018 6th International Symposium on Digital Forensic and Security (ISDFS), Antalya, Turkey, 22–25 March 2018; pp. 1–4. [Google Scholar]
- Özkaynak, F. Construction of robust substitution boxes based on chaotic systems. Neural Comput. Appl. 2019, 31, 3317–3326. [Google Scholar] [CrossRef]
- Al Solami, E.; Ahmad, M.; Volos, C.; Doja, M.N.; Beg, M.M.S. A new hyperchaotic system-based design for efficient bijective substitution-boxes. Entropy 2018, 20, 525. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Seeru, F.; Siddiqi, A.M.; Masood, S. Dynamic 9 × 9 Substitution-Boxes Using Chaos-Based Heuristic Search. In Soft Computing: Theories and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 839–851. [Google Scholar]
- Ahmed, H.A.; Zolkipli, M.F.; Ahmad, M. A novel efficient substitution-box design based on firefly algorithm and discrete chaotic map. Neural Comput. Appl. 2019, 31, 7201–7210. [Google Scholar] [CrossRef]
- Alzaidi, A.A.; Ahmad, M.; Ahmed, H.S.; Solami, E.A. Sine-cosine optimization-based bijective substitution-boxes construction using enhanced dynamics of chaotic map. Complexity 2018, 2018, 9389065. [Google Scholar] [CrossRef]
- Wang, X.; Akgul, A.; Cavusoglu, U.; Pham, V.T.; Vo Hoang, D.; Nguyen, X.Q. A chaotic system with infinite equilibria and its S-box constructing application. Appl. Sci. 2018, 8, 2132. [Google Scholar] [CrossRef] [Green Version]
- Behnia, S.; Akhshani, A.; Mahmodi, H.; Akhavan, A. A novel algorithm for image encryption based on mixture of chaotic maps. Chaos Solitons Fractals 2008, 35, 408–419. [Google Scholar] [CrossRef]
- Guanrong, C.; Yaobin, M.; Chui Charles, K. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 2004, 21, 749–761. [Google Scholar]
- Lian, S.; Sun, J.; Wang, Z. A block cipher based on a suitable use of the chaotic standard map. Chaos Solitons Fractals 2005, 26, 117–129. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, G.; Lian, S. A novel fast image encryption scheme based on 3D chaotic baker maps. Int. J. Bifurc. Chaos 2004, 14, 3613–3624. [Google Scholar] [CrossRef]
- Mazloom, S.; Eftekhari-Moghadam, A.M. Color image encryption based on coupled nonlinear chaotic map. Chaos Solitons Fractals 2009, 42, 1745–1754. [Google Scholar] [CrossRef]
- Sun, F.; Liu, S.; Li, Z.; Lü, Z. A novel image encryption scheme based on spatial chaos map. Chaos Solitons Fractals 2008, 38, 631–640. [Google Scholar] [CrossRef]
- Wang, Y.; Wong, K.W.; Liao, X.; Chen, G. A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 2011, 11, 514–522. [Google Scholar] [CrossRef]
- Wong, K.W.; Kwok, B.S.H.; Law, W.S. A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 2008, 372, 2645–2652. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C. A novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 2012, 285, 29–37. [Google Scholar] [CrossRef]
- Ahmad, J.; Larijani, H.; Emmanuel, R.; Mannion, M.; Javed, A. Occupancy detection in non-residential buildings–A survey and novel privacy preserved occupancy monitoring solution. Appl. Comput. Informat. 2018, in press. [Google Scholar] [CrossRef]
- Khan, F.A.; Ahmed, J.; Khan, J.S.; Ahmad, J.; Khan, M.A.; Hwang, S.O. A new technique for designing 8 × 8 substitution box for image encryption applications. In Proceedings of the 2017 IEEE 9th Computer Science and Electronic Engineering (CEEC), Colchester, UK, 27–29 September 2017; pp. 7–12. [Google Scholar]
- Ahmad, J.; Larijani, H.; Emmanuel, R.; Mannion, M.; Javed, A.; Ahmadinia, A. An intelligent real-time occupancy monitoring system with enhanced encryption and privacy. In Proceedings of the 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), Berkeley, CA, USA, 16–18 July 2018; pp. 524–529. [Google Scholar]
- Ahmad, J.; Larijani, H.; Emmanuel, R.; Mannion, M.; Javed, A.; Phillipson, M. Energy demand prediction through novel random neural network predictor for large non-domestic buildings. In Proceedings of the 2017 Annual IEEE International Systems Conference (SysCon), Montreal, QC, Canada, 24–27 April 2017; pp. 1–6. [Google Scholar]
- Xiang, T.; Wong, K.w.; Liao, X. Selective image encryption using a spatiotemporal chaotic system. Chaos Interdiscip. J. Nonlinear Sci. 2007, 17, 023115. [Google Scholar] [CrossRef]
- Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934. [Google Scholar] [CrossRef]
- Khan, M.; Waseem, H.M. A novel image encryption scheme based on quantum dynamical spinning and rotations. PLoS ONE 2018, 13, e0206460. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, H. A chaotic image encryption algorithm based on zigzag-like transform and DNA-like coding. Multimed. Tools Appl. 2019, 78, 34981–34997. [Google Scholar] [CrossRef]
- Gao, T.; Chen, Z. A new image encryption algorithm based on hyperchaos. Phys. Lett. A 2008, 372, 394–400. [Google Scholar] [CrossRef]
- Ahmad, J.; Hwang, S.O.; Ali, A. An experimental comparison of chaotic and non-chaotic image encryption schemes. Wirel. Pers. Commun. 2015, 84, 901–918. [Google Scholar] [CrossRef]
- Ahmad, J.; Tahir, A.; Khan, J.S.; Khan, M.A.; Khan, F.A.; Habib, Z. A Partial Ligt-weight Image Encryption Scheme. In Proceedings of the IEEE 2019 UK/China Emerging Technologies (UCET), Glasgow, UK, 21–22 August 2019; pp. 1–3. [Google Scholar]
- Zhang, Y.Q.; Wang, X.Y. A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Inf. Sci. 2014, 273, 329–351. [Google Scholar] [CrossRef]
- Mirzaei, O.; Yaghoobi, M.; Irani, H. A new image encryption method: Parallel sub-image encryption with hyper chaos. Nonlinear Dyn. 2012, 67, 557–566. [Google Scholar] [CrossRef]
- Belazi, A.; El-Latif, A.A.A.; Belghith, S. A novel image encryption scheme based on substitution-permutation network and chaos. Signal Process. 2016, 128, 155–170. [Google Scholar] [CrossRef]
- Khan, M.; Masood, F.; Alghafis, A. Secure image encryption scheme based on fractals key with Fibonacci series and discrete dynamical system. Neural Comput. Appl. 2019, 1–24. [Google Scholar] [CrossRef]
- Wang, X.; Xu, D. Image encryption using genetic operators and intertwining logistic map. Nonlinear Dyn. 2014, 78, 2975–2984. [Google Scholar] [CrossRef]
- Huang, X. Image encryption algorithm using chaotic Chebyshev generator. Nonlinear Dyn. 2012, 67, 2411–2417. [Google Scholar] [CrossRef]
- Wang, X.; Luan, D.; Bao, X. Cryptanalysis of an image encryption algorithm using Chebyshev generator. Digit. Signal Process. 2014, 25, 244–247. [Google Scholar] [CrossRef]
- Rhouma, R.; Meherzi, S.; Belghith, S. OCML-based colour image encryption. Chaos Solitons Fractals 2009, 40, 309–318. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X. Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 2010, 59, 3320–3327. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.K.; Nien, H.H. Multi chaotic systems based pixel shuffle for image encryption. Opt. Commun. 2009, 282, 2123–2127. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Q. A novel image encryption method based on total shuffling scheme. Opt. Commun. 2011, 284, 2775–2780. [Google Scholar] [CrossRef]
- Norouzi, B.; Mirzakuchaki, S.; Seyedzadeh, S.M.; Mosavi, M.R. A simple, sensitive and secure image encryption algorithm based on hyperchaotic system with only one round diffusion process. Multimed. Tools Appl. 2014, 71, 1469–1497. [Google Scholar] [CrossRef]
- Ahmed, F.; Anees, A.; Abbas, V.U.; Siyal, M.Y. A noisy channel tolerant image encryption scheme. Wirel. Pers. Commun. 2014, 77, 2771–2791. [Google Scholar] [CrossRef]
Plain Image Directions | Encrypted Image Directions | ||||||||
---|---|---|---|---|---|---|---|---|---|
Images | H-D | D-D | V-D | A-V | H-D | D-D | V-D | A-V | |
1 | Proposed | 0.9086 | 0.8313 | 0.9053 | 0.8817 | 0.0005 | −0.0047 | 0.1313 | 0.042 |
2 | Ref. [4] | 0.9727 | 0.9204 | 0.9573 | - | −0.0394 | −0.0194 | −0.0223 | - |
3 | Ref. [64] | - | - | - | - | 0.0681 | 0.0128 | 0.0049 | - |
4 | Ref. [65] | - | - | - | - | 0.0965 | 0.0362 | −0.0581 | - |
5 | Ref. [66] | - | - | - | - | 0.1257 | 0.0226 | 0.0581 | - |
S. No. | Algorithms | MSE Values |
---|---|---|
1 | Proposed | 7775.0 |
2 | AES | 4600 |
3 | AES-CBC | 4637 |
4 | AES-Counter | 4938 |
5 | AES-Feedback | 4577 |
6 | AES-Stream | 4911 |
S. No. | Algorithms | Entropy Values |
---|---|---|
1 | Ideal | 8.0000 |
2 | Proposed | 7.9911 |
3 | Baptisa’s algorithm [67] | 7.9260 |
4 | Wong’s algorithm [67] | 7.9690 |
5 | Rhouma et al. [64] | 7.9732 |
6 | Huang et al. [66] | 7.7703 |
7 | Hongjun at al. [65] | 7.9845 |
S. No. | Algorithms | MAE Values |
---|---|---|
1 | Proposed | 114 |
2 | [14]-Lena image | 77.35 |
3 | [14]-Baboon image | 73.91 |
4 | [60] | 92 |
5 | Norouzi et al. [68]-Lena | 77.82 |
6 | Norouzi et al. [68]-Tiffany image | 94.36 |
7 | Norouzi et al. [68]-Splash | 76.78 |
S. No. | Algorithms | Time Complexity (s) |
---|---|---|
1 | Proposed | 8.6 ms |
2 | Ahmad et al. [10]-Lena image | 2.25 s |
3 | Ahmad et al. [10]-Pepper image | 2.76 s |
4 | Ahmad et al. [10]-Sailboat image | 2.66 s |
5 | Ahmad et al. [10]-Baboon image | 2.55 s |
6 | Ahmad et al. [69]-Lena image | 3.23 s |
7 | Ahmad et al. [69]-Pepper image | 3.68 s |
8 | Ahmad et al. [69]-Sailboat image | 3.55 s |
9 | Ahmad et al. [69]-Baboon image | 3.53 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, J.; Masood, F.; Shah, S.A.; Jamal, S.S.; Hussain, I. A Novel Secure Occupancy Monitoring Scheme Based on Multi-Chaos Mapping. Symmetry 2020, 12, 350. https://doi.org/10.3390/sym12030350
Ahmad J, Masood F, Shah SA, Jamal SS, Hussain I. A Novel Secure Occupancy Monitoring Scheme Based on Multi-Chaos Mapping. Symmetry. 2020; 12(3):350. https://doi.org/10.3390/sym12030350
Chicago/Turabian StyleAhmad, Jawad, Fawad Masood, Syed Aziz Shah, Sajjad Shaukat Jamal, and Iqtadar Hussain. 2020. "A Novel Secure Occupancy Monitoring Scheme Based on Multi-Chaos Mapping" Symmetry 12, no. 3: 350. https://doi.org/10.3390/sym12030350
APA StyleAhmad, J., Masood, F., Shah, S. A., Jamal, S. S., & Hussain, I. (2020). A Novel Secure Occupancy Monitoring Scheme Based on Multi-Chaos Mapping. Symmetry, 12(3), 350. https://doi.org/10.3390/sym12030350