Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators
Abstract
:1. Introduction
2. Mathematical Model
3. Solar Generation Forecasting
Artificial Neural Network
4. Optimization Strategy
Algorithm 1: Main steps for solving the proposed MINLP model in GAMS [57] 

5. Test System and Numerical Validations
5.1. Test System
5.2. Objective Function and Daily Curves
5.3. Simulation Scenarios
5.4. Numerical Results
6. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
 Blaabjerg, F.; Chen, Z.; Kjaer, S.B. Power electronics as efficient interface in dispersed power generation systems. IEEE Trans. Power Electron. 2004, 19, 1184–1194. [Google Scholar] [CrossRef]
 Wandhare, R.G.; Agarwal, V. Novel Integration of a PVWind Energy System With Enhanced Efficiency. IEEE Trans. Power Electron. 2015, 30, 3638–3649. [Google Scholar] [CrossRef]
 Montoya, O.D.; GilGonzález, W.; Garces, A. Distributed energy resources integration in singlephase microgrids: An application of IDAPBC and PIPBC approaches. Int. J. Electr. Power Energy Syst. 2019, 112, 221–231. [Google Scholar] [CrossRef]
 GilGonzález, W.; Montoya, O.D.; Holguín, E.; Garces, A.; GrisalesNoreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. [Google Scholar] [CrossRef]
 Grisales, L.F.; Montoya, O.D.; Grajales, A.; Hincapie, R.A.; Granada, M. Optimal Planning and Operation of Distribution Systems Considering Distributed Energy Resources and Automatic Reclosers. IEEE Lat. Am. Trans. 2018, 16, 126–134. [Google Scholar] [CrossRef]
 Montoya, O.D.; Grajales, A.; Garces, A.; Castro, C.A. Distribution Systems Operation Considering Energy Storage Devices and Distributed Generation. IEEE Lat. Am. Trans. 2017, 15, 890–900. [Google Scholar] [CrossRef]
 Di Noia, L.P.; Genduso, F.; Miceli, R.; Rizzo, R. Optimal Integration of Hybrid Supercapacitor and IPT System for a FreeCatenary Tramway. IEEE Trans. Ind. Appl. 2019, 55, 794–801. [Google Scholar] [CrossRef]
 Jayasinghe, S.D.G.; Vilathgamuwa, D.M.; Madawala, U.K. A Dual InverterBased Supercapacitor Direct Integration Scheme for Wind Energy Conversion Systems. IEEE Trans. Ind. Appl. 2013, 49, 1023–1030. [Google Scholar] [CrossRef]
 Montoya, O.D.; Garcés, A.; Serra, F.M. DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators. J. Energy Storage 2018, 16, 250–258. [Google Scholar] [CrossRef]
 GilGonzález, W.; Montoya, O.D.; Garces, A. Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBCPI approach. J. Energy Storage 2018, 20, 163–172. [Google Scholar] [CrossRef]
 Shen, L.; Cheng, Q.; Cheng, Y.; Wei, L.; Wang, Y. Hierarchical control of DC microgrid for photovoltaic EV charging station based on flywheel and battery energy storage system. Electr. Power Syst. Res. 2020, 179, 106079. [Google Scholar] [CrossRef]
 Huang, C.N.; Chen, Y.S. Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles. Energy 2017, 118, 840–852. [Google Scholar] [CrossRef]
 Murad, M.A.A.; Milano, F. Modeling and Simulation of PIControllers Limiters for the Dynamic Analysis of VSCBased Devices. IEEE Trans. Power Syst. 2019, 34, 3921–3930. [Google Scholar] [CrossRef]
 Schiffer, J.; Seel, T.; Raisch, J.; Sezi, T. Voltage Stability and Reactive Power Sharing in InverterBased Microgrids With ConsensusBased Distributed Voltage Control. IEEE Trans. Control Syst. Technol. 2016, 24, 96–109. [Google Scholar] [CrossRef] [Green Version]
 Joung, K.W.; Kim, T.; Park, J. Decoupled Frequency and Voltage Control for StandAlone Microgrid with High Renewable Penetration. IEEE Trans. Ind. Appl. 2019, 55, 122–133. [Google Scholar] [CrossRef]
 SimpsonPorco, J.W.; Shafiee, Q.; Dörfler, F.; Vasquez, J.C.; Guerrero, J.M.; Bullo, F. Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging. IEEE Trans. Ind. Electron. 2015, 62, 7025–7038. [Google Scholar] [CrossRef]
 Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153. [Google Scholar] [CrossRef]
 Montoya, O.D.; GilGonzález, W.; Garces, A. Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes. Electr. Power Syst. Res. 2019, 175, 105887. [Google Scholar] [CrossRef]
 Montoya, O.D.; GilGonzález, W.; Garces, A. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation. IEEE Trans. Circuits Syst. II 2019, 66, 1018–1022. [Google Scholar] [CrossRef]
 Li, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in StandAlone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506. [Google Scholar] [CrossRef] [Green Version]
 Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access 2015, 3, 890–925. [Google Scholar] [CrossRef]
 Montoya, O.D.; GilGonzález, W.; Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids. Electr. Power Syst. Res. 2019, 169, 18–23. [Google Scholar] [CrossRef]
 Montoya, O.D.; GilGonzález, W.; GrisalesNoreña, L.F. Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks with CPLs. IEEE Trans. Circuits Syst. II 2019. [Google Scholar] [CrossRef]
 Garcés, A. On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777. [Google Scholar] [CrossRef] [Green Version]
 Montoya, O.D.; Garrido, V.M.; GilGonzález, W.; GrisalesNoreña, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods. IEEE Trans. Circuits Syst. II 2019, 66, 1865–1869. [Google Scholar] [CrossRef]
 Yu, S.Y.; Kim, H.J.; Kim, J.H.; Han, B.M. SoCBased Output Voltage Control for BESS with a LithiumIon Battery in a StandAlone DC Microgrid. Energies 2016, 9, 924. [Google Scholar] [CrossRef] [Green Version]
 Robinson, S.; Papadopoulos, S.; Jadraque Gago, E.; Muneer, T. Feasibility Study of Integrating Renewable Energy Generation System in Sark Island to Reduce Energy Generation Cost and CO2 Emissions. Energies 2019, 12, 4722. [Google Scholar] [CrossRef] [Green Version]
 GilGonzález, W.; Montoya, O.D.; Garces, A. Modeling and control of a small hydropower plant for a DC microgrid. Electr. Power Syst. Res. 2020, 180, 106104. [Google Scholar] [CrossRef]
 Hassan, M.A.; Li, E.; Li, X.; Li, T.; Duan, C.; Chi, S. Adaptive PassivityBased Control of dc–dc Buck Power Converter With Constant Power Load in DC Microgrid Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 2029–2040. [Google Scholar] [CrossRef]
 Shadmand, M.B.; Balog, R.S.; AbuRub, H. Model Predictive Control of PV Sources in a Smart DC Distribution System: Maximum Power Point Tracking and Droop Control. IEEE Trans. Energy Convers. 2014, 29, 913–921. [Google Scholar] [CrossRef]
 Vafamand, N.; Khooban, M.H.; Dragičević, T.; Blaabjerg, F. Networked Fuzzy Predictive Control of Power Buffers for Dynamic Stabilization of DC Microgrids. IEEE Trans. Ind. Electron. 2019, 66, 1356–1362. [Google Scholar] [CrossRef]
 Ghiasi, M.I.; Golkar, M.A.; Hajizadeh, A. Lyapunov BasedDistributed FuzzySliding Mode Control for Building IntegratedDC Microgrid With PlugIn Electric Vehicle. IEEE Access 2017, 5, 7746–7752. [Google Scholar] [CrossRef]
 Mokhtar, M.; Marei, M.I.; ElSattar, A.A. An Adaptive Droop Control Scheme for DC Microgrids Integrating Sliding Mode Voltage and Current Controlled Boost Converters. IEEE Trans. Smart Grid 2019, 10, 1685–1693. [Google Scholar] [CrossRef]
 Liu, X.; Liu, Y.; Liu, J.; Xiang, Y.; Yuan, X. Optimal planning of ACDC hybrid transmission and distributed energy resource system: Review and prospects. CSEE J. Power Energy Syst. 2019, 5, 409–422. [Google Scholar] [CrossRef]
 Wogrin, S.; Gayme, D.F. Optimizing Storage Siting, Sizing, and Technology Portfolios in TransmissionConstrained Networks. IEEE Trans. Power Syst. 2015, 30, 3304–3313. [Google Scholar] [CrossRef]
 Sachs, J.; Sawodny, O. A TwoStage Model Predictive Control Strategy for Economic DieselPVBattery Island Microgrid Operation in Rural Areas. IEEE Trans. Sustain. Energy 2016, 7, 903–913. [Google Scholar] [CrossRef]
 Adefarati, T.; Bansal, R.C.; John Justo, J. Technoeconomic analysis of a PV–wind–battery–diesel standalone power system in a remote area. J. Eng. 2017, 2017, 740–744. [Google Scholar] [CrossRef]
 Moradi, M.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74. [Google Scholar] [CrossRef]
 Gandomkar, M.; Vakilian, M.; Ehsan, M. A Genetic–Based Tabu Search Algorithm for Optimal DG Allocation in Distribution Networks. Electr. Power Components Syst. 2005, 33, 1351–1362. [Google Scholar] [CrossRef]
 Nekooei, K.; Farsangi, M.M.; NezamabadiPour, H.; Lee, K.Y. An Improved MultiObjective Harmony Search for Optimal Placement of DGs in Distribution Systems. IEEE Trans. Smart Grid 2013, 4, 557–567. [Google Scholar] [CrossRef]
 Sultana, S.; Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system. Appl. Soft Comput. 2016, 40, 391–404. [Google Scholar] [CrossRef]
 GrisalesNoreña, L.F.; Gonzalez Montoya, D.; RamosPaja, C.A. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies 2018, 11, 1018. [Google Scholar] [CrossRef] [Green Version]
 Kaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617. [Google Scholar] [CrossRef]
 Montoya, O.D.; GilGonzález, W.; GrisalesNoreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. 2019. [Google Scholar] [CrossRef]
 Montoya, O.D.; GilGonzález, W.; GrisalesNoreña, L. Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches. Int. J. Electr. Power Energy Syst. 2020, 115, 105442. [Google Scholar] [CrossRef]
 Montoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks. Eng. Sci. Technol. Int. J. 2019. [Google Scholar] [CrossRef]
 GrisalesNoreña, L.F.; GarzonRivera, O.D.; Montoya, O.D.; RamosPaja, C.A. Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks. In Workshop on Engineering Applications; Chapter Applied Computer Sciences in Engineering; FigueroaGarcía, J., DuarteGonzález, M., JaramilloIsaza, S., OrjuelaCañon, A., DíazGutierrez, Y., Eds.; Springer: Cham, Switzerland, 2019; Volume 1052, pp. 214–225. [Google Scholar] [CrossRef]
 Montoya, O.D.; Garrido, V.M.; GrisalesNoreña, L.F.; GilGonzález, W.; Garces, A.; RamosPaja, C.A. Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS. In Proceedings of the 2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM), Salto, Uruguay, 14–16 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
 Maleki, A.; Pourfayaz, F.; Hafeznia, H.; Rosen, M.A. A novel framework for optimal photovoltaic size and location in remote areas using a hybrid method: A case study of eastern Iran. Energy Convers. Manag. 2017, 153, 129–143. [Google Scholar] [CrossRef]
 Montoya, O.D.; GilGonzález, W.; GrisalesNoreña, L.; OrozcoHenao, C.; Serra, F. Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using VoltageDependent Load Models. Energies 2019, 12, 4494. [Google Scholar] [CrossRef] [Green Version]
 SimpsonPorco, J.W.; Dörfler, F.; Bullo, F. On Resistive Networks of ConstantPower Devices. IEEE Trans. Circuits Syst. II 2015, 62, 811–815. [Google Scholar] [CrossRef] [Green Version]
 Zhang, L. Artificial Neural Network Architecture Design for EEG Time Series Simulation Using Chaotic System. In Proceedings of the 2018 Joint 7th International Conference on Informatics, Electronics Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision Pattern Recognition (icIVPR), Kitakyushu, Japan, 25–29 June 2018; pp. 388–393. [Google Scholar] [CrossRef]
 Du, Y.C.; Stephanus, A. LevenbergMarquardt Neural Network Algorithm for Degree of Arteriovenous Fistula Stenosis Classification Using a Dual Optical Photoplethysmography Sensor. Sensors 2018, 18, 2322. [Google Scholar] [CrossRef] [Green Version]
 Wilson, P.; Mantooth, H.A. Chapter 10—ModelBased Optimization Techniques. In ModelBased Engineering for Complex Electronic Systems; Wilson, P., Mantooth, H.A., Eds.; Newnes: Oxford, UK, 2013; pp. 347–367. [Google Scholar] [CrossRef]
 Naghiloo, A.; Abbaspour, M.; MohammadiIvatloo, B.; Bakhtari, K. GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran. Renew. Sustain. Energy Rev. 2015, 52, 1559–1565. [Google Scholar] [CrossRef]
 Montoya, O.D. Solving a Classical Optimization Problem Using GAMS Optimizer Package: Economic Dispatch Problem Implementation. Ingenieria y Ciencia 2017, 13, 39–63. [Google Scholar] [CrossRef] [Green Version]
 GAMS Development Corp. GAMS Free Demo Version. Available online: https://www.gams.com/download/ (accessed on 14 February 2020).
Node i  Node j  ${\mathit{R}}_{\mathit{ij}}$ [pu]  ${\mathit{P}}_{\mathit{j}}$ [pu]  Node i  Node j  ${\mathit{R}}_{\mathit{ij}}$ [pu]  ${\mathit{P}}_{\mathit{j}}$ [pu] 

1(slack)  2  0.0053  0.70  11  12  0.0079  0.68 
1  3  0.0054  0.00  11  13  0.0078  0.10 
3  4  0.0054  0.36  10  14  0.0083  0.00 
4  5  0.0063  0.04  14  15  0.0065  0.22 
4  6  0.0051  0.36  15  16  0.0064  0.23 
3  7  0.0037  0.00  16  17  0.0074  0.43 
7  8  0.0079  0.32  16  18  0.0081  0.34 
7  9  0.0072  0.80  14  19  0.0078  0.09 
3  10  0.0053  0.00  19  20  0.0084  0.21 
10  11  0.0038  0.45  19  21(slack)  0.0082  0.21 
Type of Emission  Chemical Symbol  Rank [lb/MWh] 

Carbon dioxide  $C{O}_{2}$  1000–1700 
Sulfur dioxide  $S{O}_{2}$  0.40–3.00 
Nitrogen oxides  $N{O}_{x}$  10–41 
Carbon monoxide  $CO$  0.40–9.00 
Heavy particles  $PM10$  0.40–3.00 
Period  Real [pu]  Forec. [pu]  Load [pu]  Period  Real [pu]  Forec. [pu]  Load [pu] 

1  0.000  0.000  0.633  25  1.000  0.976  0.814 
2  0.000  0.000  0.619  26  0.975  1.000  0.842 
3  0.000  0.000  0.605  27  0.771  0.978  0.869 
4  0.000  0.000  0.578  28  0.889  0.790  0.886 
5  0.000  0.000  0.550  29  0.630  0.883  0.902 
6  0.000  0.000  0.495  30  0.593  0.604  0.905 
7  0.000  0.000  0.440  31  0.404  0.606  0.908 
8  0.000  0.000  0.435  32  0.366  0.357  0.908 
9  0.000  0.000  0.429  33  0.231  0.328  0.908 
10  0.000  0.000  0.421  34  0.203  0.142  0.935 
11  0.000  0.000  0.413  35  0.130  0.142  0.963 
12  0.000  0.000  0.419  36  0.053  0.073  0.987 
13  0.000  0.000  0.426  37  0.008  0.019  0.988 
14  0.000  0.000  0.433  38  0.000  0.008  0.989 
15  0.000  0.026  0.440  39  0.000  0.000  0.990 
16  0.024  0.052  0.495  40  0.000  0.000  0.995 
17  0.124  0.110  0.550  41  0.000  0.000  1.000 
18  0.272  0.263  0.550  42  0.000  0.000  0.995 
19  0.439  0.431  0.550  43  0.000  0.000  0.990 
20  0.604  0.594  0.605  44  0.000  0.000  0.935 
21  0.733  0.730  0.660  45  0.000  0.000  0.880 
22  0.810  0.830  0.701  46  0.000  0.000  0.770 
23  0.860  0.875  0.743  47  0.000  0.000  0.660 
24  0.984  0.899  0.778  48  0.000  0.000  0.633 
Simulation Scenario  Objective Function [lb] (${\mathit{CO}}_{2}$)  Processing Time [s] 

${\mathbf{S}}_{1}$  13,428.91  6.224 
${\mathbf{S}}_{2}$  11,027.19  11.001 
${\mathbf{S}}_{3}$  10,892.80  18.478 
${\mathbf{S}}_{4}$  10,878.18  19.063 
Simulation Scenario  Location [node]  Size [kW]  Total Penetration [kW]  

${\mathbf{S}}_{1}$  —  —  —  —  —  —  0 
${\mathbf{S}}_{2}$  17  —  —  320.37  —  —  320.372 
${\mathbf{S}}_{3}$  17  19  —  141.30  191.098  —  332.400 
${\mathbf{S}}_{4}$  12  17  19  91.33  101.582  139.485  332.400 
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya, O.D.; GrisalesNoreña, L.F.; GilGonzález, W.; Alcalá, G.; HernandezEscobedo, Q. Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators. Symmetry 2020, 12, 322. https://doi.org/10.3390/sym12020322
Montoya OD, GrisalesNoreña LF, GilGonzález W, Alcalá G, HernandezEscobedo Q. Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators. Symmetry. 2020; 12(2):322. https://doi.org/10.3390/sym12020322
Chicago/Turabian StyleMontoya, Oscar Danilo, Luis Fernando GrisalesNoreña, Walter GilGonzález, Gerardo Alcalá, and Quetzalcoatl HernandezEscobedo. 2020. "Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators" Symmetry 12, no. 2: 322. https://doi.org/10.3390/sym12020322