# Energy of Accelerations Used to Obtain the Motion Equations of a Three- Dimensional Finite Element

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Gibbs–Appell Formalism

_{j}.

## 3. Basic Hypothesis

## 4. Motion Equations

## 5. Conclusions and Discussions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Erdman, A.G.; Sandor, G.N.; Oakberg, A. A General Method for Kineto-Elastodynamic Analysis and Synthesis of Mechanism. Journal of Engineering for Industry. ASME Trans.
**1972**, 94, 1193. [Google Scholar] - Bagci, C. Elastodynamic Response of Mechanical Systems using Matrix Exponential Mode Uncoupling and Incremental Forcing Techniques with Finite Element Method. In Proceedings of the Sixth Word Congress on Theory of Machines and Mechanisms, New Delhi, India, 15–20 December 1983; Volume 472. [Google Scholar]
- Bahgat, B.M.; Willmert, K.D. Finite Element Vibrational Analysis of Planar Mechanisms. Mech. Mach. Theory
**1976**, 11, 47–71. [Google Scholar] [CrossRef] - Cleghorn, W.L.; Fenton, E.G.; Tabarrok, K.B. Finite Element Analysis of High-Speed Flexible Mechanisms. Mech. Mach. Theory
**1981**, 16, 407–424. [Google Scholar] [CrossRef] - Christensen, E.R.; Lee, S.W. Nonlinear finite element modelling of the dynamics of unrestrained flexible structures. Comput. Struct
**1986**, 23, 819–829. [Google Scholar] [CrossRef] - Midha, A.; Erdman, A.G.; Frohrib, D.A. Finite element approach to mathematical modeling of high-speed elastic linkages. Mech. Mach. Theory
**1978**, 13, 603–618. [Google Scholar] [CrossRef] - Nath, P.K.; Ghosh, A. Steady-state response of mechanism with elastic links by finite element methods. Mech. Mach. Theory
**1980**, 15, 199–211. [Google Scholar] [CrossRef] - Vlase, S.; Marin, M.; Öchsner, A.; Scutaru, M.L. Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Contin. Mech. Thermodyn.
**2019**. [Google Scholar] [CrossRef] - Vlase, S. Dynamical Response of a Multibody System with Flexible Elements with a General Three-Dimensional Motion. Rom. J. Phys.
**2012**, 57, 676–693. [Google Scholar] - Vlase, S.; Dănăşel, C.; Scutaru, M.L.; Mihălcică, M. Finite Element Analysis of a Two-Dimensional Linear Elastic Systems with a Plane "rigid Motion. Rom. J. Phys.
**2014**, 59, 476–487. [Google Scholar] - Deü, J.-F.; Galucio, A.C.; Ohayon, R. Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct.
**2008**, 86, 258–265. [Google Scholar] [CrossRef] [Green Version] - Hou, W.; Zhang, X. Dynamic analysis of flexible linkage mechanisms under uniform temperature change. J. Sound Vib.
**2009**, 319, 570–592. [Google Scholar] [CrossRef] - Neto, M.A.; Ambrósio, J.A.C.; Leal, R.P. Composite materials in flexible multibody systems. Comput. Methods Appl. Mech. Eng.
**2006**, 195, 6860–6873. [Google Scholar] [CrossRef] [Green Version] - Piras, G.; Cleghorn, W.L.; Mills, J.K. Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links. Mech. Mach. Theory
**2005**, 40, 849–862. [Google Scholar] [CrossRef] - Shi, Y.M.; Li, Z.F.; Hua, H.X.; Fu, Z.F.; Liu, T.X. The Modeling and Vibration Control of Beams with Active Constrained Layer Damping. J. Sound Vib.
**2001**, 245, 785–800. [Google Scholar] [CrossRef] - Zhang, X.; Erdman, A.G. Dynamic responses of flexible linkage mechanisms with viscoelastic constrained layer damping treatment. Comput. Struct.
**2001**, 79, 1265–1274. [Google Scholar] [CrossRef] - Zhang, X.; Lu, J.; Shen, Y. Simultaneous optimal structure and control design of flexible linkage mechanism for noise attenuation. J. Sound Vib.
**2007**, 299, 1124–1133. [Google Scholar] - Gibbs, J.W. On the fundamental formulae of dynamics. Am. J. Math.
**1879**, 2, 49–64. [Google Scholar] [CrossRef] - Appell, P. Sur une forme générale des equations de la dynamique. C.R. Acad. Sci. Paris
**1899**, 129, 459–460. [Google Scholar] - Mirtaheri, S.M.; Zohoor, H. The Explicit Gibbs-Appell Equations of Motion for Rigid-Body Constrained Mechanical System. In Book Series: RSI International Conference on Robotics and Mechatronics ICRoM; IEEE: Piscataway, NJ, USA, 2018; pp. 304–309. [Google Scholar]
- Mehrjooee, O.; Dehkordi, S.F.; Korayem, M.H. Dynamic modeling and extended bifurcation analysis of flexible-link manipulator. Mech. Based Des. Struct. Mach.
**2019**, 1–24. [Google Scholar] [CrossRef] - Korayem, M.H.; Dehkordi, S.F. Motion equations of cooperative multi flexible mobile manipulator via recursive Gibbs-Appell formulation. Appl. Math. Model.
**2019**, 65, 443–463. [Google Scholar] [CrossRef] - Shafei, A.M.; Shafei, H.R. A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment. Multibody Syst. Dyn.
**2017**, 38, 21–42. [Google Scholar] [CrossRef] - Amini, S.; Dehkordi, S.F.; Fahraji, S.H. Motion equation derivation and tip-over evaluations for K mobile manipulators with the consideration of motors mass by the use of Gibbs-Appell formulation. In Proceedings of the 5th RSI International Conference on Robotics and Mechatronics (IcRoM), Tehran, Iran, 25–27 October 2017. [Google Scholar]
- Korayem, M.H.; Dehkordi, S.F. Derivation of dynamic equation of viscoelastic manipulator with revolute-prismatic joint using recursive Gibbs-Appell formulation. Nonlinear Dyn.
**2017**, 89, 2041–2064. [Google Scholar] [CrossRef] - Shafei, A.M.; Korayem, M.H. Theoretical and experimental study of dynamic load-carrying capacity for flexible robotic arms in point-to-point motion. Optim. Control Appl. Methods
**2017**, 38, 963–972. [Google Scholar] [CrossRef] - Negrean, I.; Kacso, K.; Schonstein, C.; Duca, A. Mechanics, Theory and Applications; UTPRESS: Cluj-Napoca, Romania, 2012. [Google Scholar]
- Negrean, I.; Crișan, A.-D. Synthesis on the Acceleration Energies in the Advanced Mechanics of the Multibody Systems. Symmetry
**2019**, 11, 1077. [Google Scholar] [CrossRef] [Green Version] - Negrean, I.; Crișan, A.-D.; Vlase, S. A New Approach in Analytical Dynamics of Mechanical Systems. Symmetry
**2020**, 12, 95. [Google Scholar] [CrossRef] [Green Version] - Vlase, S. Elimination of Lagrangian Multipliers. Mech. Res. Commun.
**1987**, 14, 17. [Google Scholar] [CrossRef] - Massonet, C.; Deprez, G.; Maquoi, R.; Muller, R.; Fonder, G. Calcul des Structures sur Ordinateur; EYROLLES: Paris, France, 1972. [Google Scholar]
- Scutaru, M.L.; Mitrica, B. Dynamical Analysis of the Mechanical System with Two Degrees of Freedom Applied to the Transmission of the Wind Turbine. Math. Probl. Eng.
**2016**, 2016, 3821083. [Google Scholar] [CrossRef]

**Figure 2.**(

**a**) Experimental test stand and (

**b**) sketch of the mechanism with the positioning of the markers (dimensions are in mm). 1—engine; 2—rotating disk; 3—invertor; 4—pumps; 5—valves; 6—rod; 7—pendulum rod; 8—weight.

Number of Finite Elements | Lagrange | Gibbs–Appell |
---|---|---|

5 | 288 | 120 |

10 | 528 | 220 |

15 | 768 | 320 |

20 | 1008 | 420 |

25 | 1248 | 520 |

30 | 1488 | 620 |

40 | 1968 | 820 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vlase, S.; Negrean, I.; Marin, M.; Scutaru, M.L.
Energy of Accelerations Used to Obtain the Motion Equations of a Three- Dimensional Finite Element. *Symmetry* **2020**, *12*, 321.
https://doi.org/10.3390/sym12020321

**AMA Style**

Vlase S, Negrean I, Marin M, Scutaru ML.
Energy of Accelerations Used to Obtain the Motion Equations of a Three- Dimensional Finite Element. *Symmetry*. 2020; 12(2):321.
https://doi.org/10.3390/sym12020321

**Chicago/Turabian Style**

Vlase, Sorin, Iuliu Negrean, Marin Marin, and Maria Luminița Scutaru.
2020. "Energy of Accelerations Used to Obtain the Motion Equations of a Three- Dimensional Finite Element" *Symmetry* 12, no. 2: 321.
https://doi.org/10.3390/sym12020321