# Elastic Deformations and Wigner–Weyl Formalism in Graphene

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Hamiltonian for the Nonlocal Tight–Binding Model

#### 2.1. General Case

#### 2.2. The ${Z}_{2}$ Sublattice Symmetry

## 3. Weyl Symbol for the Lattice Dirac Operator

#### 3.1. Lattice Dirac Operator

#### 3.2. The Definition of the Weyl Symbol in Momentum Space

#### 3.3. Elastic Deformation and Modification of Hoping Parameters

## 4. Green’s Function and the Groenewold Equation

#### 4.1. Appearance of the Moyal Product

#### 4.2. Lattice Groenewold Equation

#### 4.3. Expression for the Electric Current

## 5. Calculation of the Green’s Function in the Inhomogeneous Lattice Models

#### 5.1. Calculation of the Wigner Transformation of the Green’s Function

#### 5.2. Reconstruction of Fermion Propagator from Its Wigner Transformation

## 6. Total Hall Conductance as the Topological Invariant in Phase Space

#### 6.1. Derivation in the Framework of Wigner–Weyl Formalism

#### 6.2. From Topological Invariant in Phase Space Expressed Through ${G}_{W},{Q}_{W}$ to the Standard Expression for Hall Conductance

## 7. Integer Quantum Hall Effect in the Presence of Varying Magnetic Field and Elastic Deformations

#### 7.1. Constant Magnetic Field and Constant Hopping Parameters

#### 7.2. Constant Magnetic Field and Weakly Varying Hopping Parameters

#### 7.3. Weak Variations of Magnetic Field and Hopping Parameters

#### 7.4. Analytical Elastic Deformations In Graphene

## 8. Conclusions and Discussions

- We calculated the Weyl symbol of the lattice Dirac operator (i.e., the operator $\widehat{Q}$ that enters the action ${\sum}_{\mathit{x},\mathit{y}}{\overline{\Psi}}_{x}{Q}_{\mathit{x},\mathit{y}}{\Psi}_{y}$) in the presence of both elastic deformations and slowly varying external electromagnetic field:$${Q}_{W}=i\omega -t\sum _{j}\left(\right)open="("\; close=")">1-\beta {u}_{kl}(\mathit{x}){b}_{k}^{(j)}{b}_{l}^{(j)}$$$${A}^{(j)}(\mathit{x})={\int}_{\mathit{x}-{\mathit{b}}^{(j)}/2}^{\mathit{x}+{\mathit{b}}^{(j)}/2}\mathit{A}(\mathit{y})d\mathit{y}.$$It was assumed that the variation of electromagnetic field $A(\mathit{x})$ at the distances of order of the lattice spacing may be neglected. In practice this corresponded to magnetic fields B that obeyed $B{a}^{2}\ll 1$. In practice this bound read $B\ll 1000$ Tesla. Additionally, we required that the typical wavelenth of the external electromagnetic field was much larger than the lattice spacing. This did not allow the use of Equation (92) for matter interacting with the X-rays with the wavelengths of the order of several Angstroms and smaller;
- The Wigner transformation of the electron propagator in the presence of the slowly varying magnetic field and arbitrary elastic deformations may be calculated using the following expression:$$\begin{array}{cc}\hfill {G}_{W}(x,p)=& \sum _{M=0\dots \infty}\phantom{\rule{0.166667em}{0ex}}\underset{{Q}_{W}^{-1}}{\left(\right)open="["\; close="]">\dots \left(\right)open="["\; close="]">{Q}_{W}^{-1}(1-{e}^{\overleftrightarrow{\Delta}}){Q}_{W}}\dots (1-{e}^{\overleftrightarrow{\Delta}}){Q}_{W}]\u23df\hfill & {Q}_{W}^{-1}\end{array}\hfill \phantom{\rule{1.em}{0ex}}& \phantom{\rule{142.26378pt}{0ex}}M\phantom{\rule{0.166667em}{0ex}}brackets\hfill $$$$\overleftrightarrow{\Delta}=\frac{i}{2}\left(\right)open="("\; close=")">{\overleftarrow{\partial}}_{x}\overrightarrow{{\partial}_{p}}-\overleftarrow{{\partial}_{p}}{\overrightarrow{\partial}}_{x}$$
- The electron propagator in the presence of a slowly varying electromagnetic field and elastic deformations may be expressed through the Wigner transformed Green’s function as follows:$$\begin{array}{ccc}\hfill G({x}_{1},{x}_{2})& \approx & \frac{1}{2\pi \left|\mathcal{M}\right|}\int dp{G}_{W}(({x}_{1}+{\mathit{x}}_{2})/2,p){e}^{-ip({x}_{1}-{\mathit{x}}_{2})}\hfill \end{array}$$
- The total average Hall conductivity (i.e., the Hall conductivity integrated over the area of the sample and divided by this area) in the presence of varied weak magnetic field $\mathcal{B}\ll 1/{a}^{2}$ and elastic deformations had the form of:$${\sigma}_{xy}=\frac{\mathcal{N}}{2\pi}-\frac{{\mathcal{N}}^{(0)}}{2\pi}$$$$\mathcal{N}=\frac{T}{\mathcal{A}\phantom{\rule{0.166667em}{0ex}}3!\phantom{\rule{0.166667em}{0ex}}4{\pi}^{2}}\phantom{\rule{0.166667em}{0ex}}{\u03f5}_{ijk}\phantom{\rule{0.166667em}{0ex}}{\int}_{{\mathbb{R}}^{D+1}}\phantom{\rule{-0.166667em}{0ex}}dx\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}{\int}_{\mathbb{R}\otimes \mathcal{M}}\phantom{\rule{-0.166667em}{0ex}}dp\phantom{\rule{0.166667em}{0ex}}\mathrm{tr}\left(\right)open="["\; close="]">{G}_{W}(p,x)\ast \frac{\partial {Q}_{W}(p,x)}{\partial {p}_{i}}\ast \frac{\partial {G}_{W}(p,x)}{\partial {p}_{j}}\ast \frac{\partial {Q}_{W}(p,x)}{\partial {p}_{k}}$$$${I}_{xy}=\frac{\mathcal{N}-{\mathcal{N}}^{(0)}}{2\pi}\phantom{\rule{0.166667em}{0ex}}U$$(Recall that we used the relativistic system of units. To obtain expression for the Hall current in an ordinary system of units we have to multiply the above expression by the unity of conductance $\frac{{e}^{2}}{\hslash}$);
- The above mentioned representation of the average Hall conductivity through the topological invariant in phase space allowed us to prove that in graphene it was robust to both sufficiently weak variations of magnetic field and sufficiently weak elastic deformations. It is worth mentioning that both mentioned variations of magnetic field and elastic deformations were to be concentrated within the finite region far from the boundary of the sample. Under these conditions Equation (96) was not changed for the smooth variations of lattice Hamiltonian (for the proof see Appendix D in [57]);
- The special case of elastic deformations was considered, when the emergent gauge field in graphene was absent. It was shown that the corresponding deformations were given by the arbitrary analytical functions of coordinates. Namely, the condition of the absence of emergent gauge field was equivalent to the Riemann–Cauchy conditions for the displacement function ${u}_{i}$, $i=1,2$. As a result the function $u(z)={u}_{1}(z)+i{u}_{2}(z)$ appeared to be an analytical function of $z={x}_{1}+i{\mathit{x}}_{2}$, where ${\mathit{x}}_{i}$ were the coordinates of the carbon atoms in the unperturbed honeycomb lattice. Under these circumstances for the constant magnetic field B the Hall current was given by:$${I}_{xy}=-\frac{{N}^{\prime}\phantom{\rule{0.166667em}{0ex}}U}{2\pi}\phantom{\rule{0.166667em}{0ex}}\mathrm{sign}\phantom{\rule{0.166667em}{0ex}}B$$

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Groenewold, H.J. On the Principles of elementary quantum mechanics. Physica
**1946**, 12, 405–460. [Google Scholar] [CrossRef] - Moyal, J.E. Quantum mechanics as a statistical theory. Proc. Philos. Soc.
**1949**, 45, 99–124. [Google Scholar] [CrossRef] - Weyl, H. Quantenmechanik und Gruppentheorie. Z. Fur Phys.
**1927**, 46, 1–46. [Google Scholar] [CrossRef] - Wigner, E.P. On the quantum correction for thermodynamic equilibrium. Phys. Rev.
**1932**, 40, 749–759. [Google Scholar] [CrossRef] - Ali, S.T.; Englis, M. Quantization Methods: A Guide for Physicists and Analysts. Rev. Math. Phys.
**2005**, 17, 391–490. [Google Scholar] [CrossRef][Green Version] - Berezin, F.A.; Shubin, M.A. Colloquia Mathematica Societatis Janos Bolyai; North-Holland: Amsterdam, The Netherlands, 1972; p. 21. [Google Scholar]
- Curtright, T.L.; Zachos, C.K. Quantum Mechanics in Phase Space. Asia Pac. Phys. Newsl.
**2012**, 1, 37. [Google Scholar] [CrossRef][Green Version] - Zachos, C.; Fairlie, D.; Curtright, T. Quantum Mechanics in Phase Space; World Scientific: Singapore, 2015. [Google Scholar]
- Cohen, L. Generalized Phase-Space Distribution Functions. J. Math. Phys.
**1966**, 7, 781. [Google Scholar] [CrossRef] - Agarwal, G.S.; Wolf, E. Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. II. Quantum Mechanics in Phase Space. Phys. Rev. D
**1970**, 2, 2187–2205. [Google Scholar] [CrossRef] - Sudarshan, E.C. Sudarshan Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett.
**1963**, 10, 277–279. [Google Scholar] [CrossRef] - Glauber, R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev.
**1963**, 131, 2766–2788. [Google Scholar] [CrossRef] - Husimi, K. Some Formal Properties of the Density Matrix. Proc. Phys. Math. Soc. Jpn.
**1940**, 22, 264–314. [Google Scholar] - Agarwal, G.S.; Wolf, E. Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. I. Mapping Theorems and Ordering of Functions of Noncommuting Operators. Phys. Rev. D
**1970**, 2, 2161–2186. [Google Scholar] [CrossRef] - Cahill, K.E.; Glauber, R.J. Glauber Ordered Expansions in Boson Amplitude Operators. Phys. Rev.
**1969**, 177, 1882–1902. [Google Scholar] [CrossRef][Green Version] - Buot, F.A. Nonequilibrium Quantum Transport Physics in Nanosystems; World Scientific: Singapore, 2009. [Google Scholar]
- Lax, M. Quantum Noise. XI. Multitime correspondence between Quantum and Classical stochastic processes. Phys. Rev.
**1968**, 172, 350–361. [Google Scholar] [CrossRef] - Lorce, C.; Pasquini, B. Quark Wigner distributions and orbital angular momentum. Phys. Rev. D
**2011**, 84, 014015. [Google Scholar] [CrossRef][Green Version] - Elze, H.T.; Gyulassy, M.; Vasak, D. Transport equations for the QCD Quark Wigner Operator. Nucl. Phys. B
**1986**, 706, 276. [Google Scholar] [CrossRef][Green Version] - Hebenstreit, F.; Alkofer, R.; Gies, H. Schwinger pair production in space and time-dependent electric fields: Relating the Wigner formalism to quantum kinetic theory. Phys. Rev. D
**2010**, 82, 105026. [Google Scholar] [CrossRef][Green Version] - Calzetta, E.; Habib, S.; Hu, B.L. Quantum Kinetic Field Theory in curved space-time: Covariant Wigner function and Liouville-Vlasov equation. Phys. Rev. D
**1988**, 37, 2901. [Google Scholar] [CrossRef] - Bastos, C.; Bertolami, O.; Dias, N.C.; Prata, J.N. Weyl-Wigner formulation of noncommutative quantum mechanics. J. Math. Phys.
**2008**, 49, 072101. [Google Scholar] [CrossRef][Green Version] - Dayi, O.F.; Kelleyane, L.T. Wigner functions for the Landau problem in noncommutative spaces. Mod. Phys. Lett. A
**2002**, 17, 1937. [Google Scholar] [CrossRef][Green Version] - Habib, S.; Laflamme, R. Wigner function and decoherence in quantum cosmology. Phys. Rev. D
**1990**, 42, 4056. [Google Scholar] [CrossRef] [PubMed] - Chapman, S.; Heinz, U.W. HBT correlators: Current formalism versus Wigner function formulation. Phys. Lett. B
**1994**, 340, 250. [Google Scholar] [CrossRef][Green Version] - Berry, M.V. Semi-classical mechanics in phase space: A study of Wigner’s function. Philos. Trans. R. Soc. Lond. A
**1977**, 287, 0145. [Google Scholar] [CrossRef] - Bastos, C.; Bernardini, A.; Santos, J. Probing phase-space noncommutativity through quantum mechanics and thermodynamics of free particles and quantum rotors. Physica A
**2015**, 438, 340–354. [Google Scholar] - Bernardini, A.E.; Bertolami, O. Non-classicality from the phase-space flow analysis of the Weyl-Wigner quantum mechanics. Eur. Phys. Lett.
**2017**, 120, 20002. [Google Scholar] [CrossRef][Green Version] - Bernardini, A.E. Testing nonclassicality with exact Wigner currents for an anharmonic quantum system. Phys. Rev. A
**2018**, 98, 052128. [Google Scholar] [CrossRef][Green Version] - Zubkov, M.A.; Khaidukov, Z.V. Topology of the momentum space, Wigner transformations, and a chiral anomaly in lattice models. JETP Lett.
**2017**, 106, 166. [Google Scholar] [CrossRef] - Chernodub, M.N.; Zubkov, M.A. Scale magnetic effect in Quantum Electrodynamics and the Wigner-Weyl formalism. Phys. Rev. D
**2017**, 96, 056006. [Google Scholar] [CrossRef][Green Version] - Khaidukov, Z.V.; Zubkov, M.A. Chiral Separation Effect in lattice regularization. Phys. Rev. D
**2017**, 95, 074502. [Google Scholar] [CrossRef][Green Version] - Zubkov, M.A. Momentum space topology of QCD. Ann. Phys.
**2018**, 393, 264. [Google Scholar] [CrossRef][Green Version] - Zubkov, M.A. Absence of equilibrium chiral magnetic effect. Phys. Rev. D
**2016**, 93, 105036. [Google Scholar] [CrossRef][Green Version] - Zubkov, M.A. Wigner transformation, momentum space topology, and anomalous transport. Ann. Phys.
**2016**, 373, 298. [Google Scholar] [CrossRef][Green Version] - Kharzeev, D.E. The Chiral Magnetic Effect and Anomaly-Induced Transport. Prog. Part. Nucl. Phys.
**2014**, 75, 133. [Google Scholar] [CrossRef][Green Version] - Metlitski, M.A.; Zhitnitsky, A.R. Anomalous Axion Interactions and Topological Currents in Dense Matter. Phys. Rev. D
**2005**, 72, 045011. [Google Scholar] [CrossRef][Green Version] - Chernodub, M.N. Anomalous Transport Due to the Conformal Anomaly. Phys. Rev. Lett.
**2016**, 117, 141601. [Google Scholar] [CrossRef] - Hasan, M.Z.; Kane, C.L. Topological Insulators. Rev. Mod. Phys.
**2010**, 82, 3045–3067. [Google Scholar] [CrossRef][Green Version] - Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys.
**2011**, 83, 1057–1110. [Google Scholar] [CrossRef][Green Version] - Volovik, G.E. Topology of Quantum Vacuum; Draft for Chapter in Proceedings of the Como Summer School on Analogue Gravity, Lecture Notes in Physics; Cornell University: Ithac, NY, USA, 2013. [Google Scholar]
- Volovik, G.E. Quantum phase transitions from topology in momentum space. In Quantum Analogues: From Phase Transitions to Black Holes and Cosmology; Unruh, W.G., Schutzhold, R., Eds.; Springer Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 718, pp. 31–73. [Google Scholar]
- Volovik, G.E. Topological invariants for Standard Model: From semi-metal to topological insulator. JETP Lett.
**2010**, 91, 55. [Google Scholar] [CrossRef][Green Version] - Gurarie, V. Single-particle Green’s functions and interacting topological insulators. Phys. Rev. B
**2011**, 83, 085426. [Google Scholar] [CrossRef][Green Version] - Essin, A.M.; Gurarie, V. Bulk-boundary correspondence of topological insulators from their Green’s functions. Phys. Rev. B
**2011**, 84, 125132. [Google Scholar] [CrossRef][Green Version] - Volovik, G.E. The Universe in a Helium Droplet; Clarendon Press: Oxford, UK, 2003. [Google Scholar]
- Volovik, G.E. Topological Superfluids. arXiv
**2016**, arXiv:1602.02595. [Google Scholar] - Nielsen, H.B.; Ninomiya, M. Absence of neutrinos on a lattice: I-Proof by homotopy theory. Nucl. Phys. B
**1981**, 185, 20. [Google Scholar] [CrossRef] - So, H. Induced topological invariants by lattice fermions in odd dimensions. Prog. Theor. Phys.
**1985**, 74, 585–593. [Google Scholar] [CrossRef][Green Version] - Ishikawa, K.; Matsuyama, T. Magnetic field induced multi component QED in three-dimensions and quantum Hall effect. Z. Phys. C
**1986**, 33, 41–45. [Google Scholar] [CrossRef] - Kaplan, D.B. Method for simulating chiral fermions on the lattice. Phys. Lett. B
**1992**, 288, 342–347. [Google Scholar] [CrossRef][Green Version] - Golterman, M.F.L.; Jansen, K.; Kaplan, D.B. Chern-Simons currents and chiral fermions on the lattice. Phys. Lett. B
**1993**, 301, 219–223. [Google Scholar] [CrossRef][Green Version] - Hořava, P. Stability of Fermi surfaces and K-theory. Phys. Rev. Lett.
**2005**, 95, 016405. [Google Scholar] [CrossRef][Green Version] - Creutz, M. Four-dimensional graphene and chiral fermions. JHEP
**2008**, 2008, 017. [Google Scholar] [CrossRef] - Kaplan, D.B.; Sun, S. Spacetime as a topological insulator. arXiv
**2011**, arXiv:1112.0302. [Google Scholar] - Suleymanov, M.; Zubkov, M.A. Wigner-Weyl formalism and the propagator of Wilson fermions in the presence of varying external electromagnetic field. Nucl. Phys. B
**2019**, 938, 171. [Google Scholar] [CrossRef] - Zubkov, M.A.; Wu, X. Topological invariant in terms of the Green’s functions for the Quantum Hall Effect in the presence of varying magnetic field. arXiv
**2019**, arXiv:1901.06661. [Google Scholar] - Zhang, C.X.; Zubkov, M.A. Influence of interactions on the anomalous quantum Hall effect. arXiv
**2019**, arXiv:1902.06545. [Google Scholar] - Matsuyama, T. Quantization of Conductivity Induced by Topological Structure of Energy Momentum Space in Generalized QED in Three-dimensions. Prog. Theor. Phys.
**1987**, 77, 711. [Google Scholar] [CrossRef][Green Version] - Volovik, G.E. An analog of the quantum Hall effect in a superfluid 3 He film. Sov. Phys. JETP
**1988**, 67, 1804–1811. [Google Scholar] - Thouless, D.J.; Kohmoto, M.; Nightingale, M.P.; den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett.
**1982**, 49, 405–408. [Google Scholar] [CrossRef][Green Version] - Qi, X.L.; Hughes, T.L.; Zhang, S.C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B
**2008**, 78, 195424. [Google Scholar] [CrossRef][Green Version] - Fradkin, E. Field Theories of Condensed Matter Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Vazifeh, M.; Franz, M. Electromagnetic response of Weyl semimetals. Phys. Rev. Lett.
**2013**, 111, 027201. [Google Scholar] [CrossRef][Green Version] - Chen, Y.; Wu, S.; Burkov, A. Axion response in Weyl semimetals. Phys. Rev. B
**2013**, 88, 125105. [Google Scholar] [CrossRef][Green Version] - Chen, Y.; Bergman, D.; Burkov, A. Weyl fermions and the anomalous Hall effect in metallic ferromagnets. Phys. Rev. B
**2013**, 88, 125110. [Google Scholar] [CrossRef][Green Version] - Ramamurthy, S.T.; Hughes, T.L. Patterns of electro-magnetic response in topological semi-metals. Phys. Rev. B
**2015**, 92, 085105. [Google Scholar] [CrossRef][Green Version] - Zyuzin, A.A.; Burkov, A.A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B
**2012**, 86, 115133. [Google Scholar] [CrossRef][Green Version] - Goswami, P.; Tewari, S. Axionic field theory of (3+1)-dimensional Weyl semi-metals. Phys. Rev. B
**2013**, 88, 24510. [Google Scholar] [CrossRef][Green Version] - Niu, Q.; Thouless, D.J.; Wu, Y.S. Quantized Hall conductance as a topological invariant. Phys. Rev. B
**1985**, 31, 3372. [Google Scholar] [CrossRef] [PubMed][Green Version] - Shiba, H.; Kanada, K.; Hasegawa, H.; Fukuyama, H. Galvanomagnetic Effects in Impurity Band Conductions. J. Phys. Soc. Jpn.
**1971**, 30, 972–987. [Google Scholar] [CrossRef] - Tong, D. Lectures on the Quantum Hall Effect. arXiv
**2016**, arXiv:1606.06687. [Google Scholar] - Hatsugai, Y. Topological aspects of the quantum Hall effect. J. Phys. Condens. Matter
**1997**, 9, 2507–2549. [Google Scholar] [CrossRef] - de Juan, F.; Manes, J.L.; Vozmediano, M.A.H. Gauge fields from strain in graphene. Phys. Rev. B
**2013**, 87, 165131. [Google Scholar] [CrossRef][Green Version] - Vozmediano, M.A.H.; Katsnelson, M.I.; Guinea, F. Gauge fields in graphene. Phys. Rep.
**2010**, 496, 109. [Google Scholar] [CrossRef][Green Version] - Cortijo, A.; Guinea, F.; Vozmediano, M.A.H. Geometrical and topological aspects of graphene and related materials. J. Phys. A: Math. Theor
**2012**, 45, 383001. [Google Scholar] [CrossRef][Green Version] - Manes, J.L.; de Juan, F.; Sturla, M.; Vozmediano, M.A.H. Generalized effective Hamiltonian for graphene under nonuniform strain. Phys. Rev. B
**2013**, 88, 155405. [Google Scholar] [CrossRef][Green Version] - Oliva-Leyva, M.; Naumis, G.G. Understanding electron behavior in strained graphene as a reciprocal space distortion. Phys. Rev. B
**2013**, 88, 085430. [Google Scholar] [CrossRef][Green Version] - Volovik, G.E.; Zubkov, M.A. Emergent gravity in graphene. In Talk Presented at the International Moscow Phenomenology Workshop; Cornell University: Ithac, NY, USA, 2015. [Google Scholar]
- Volovik, G.E.; Zubkov, M.A. Emergent Hořava gravity in graphene. Ann. Phys.
**2014**, 340, 352. [Google Scholar] [CrossRef][Green Version] - Volovik, G.E.; Zubkov, M.A. Emergent geometry experienced by fermions in graphene in the presence of dislocations. Ann. Phys.
**2015**, 356, 255. [Google Scholar] [CrossRef][Green Version] - Khaidukov, Z.V.; Zubkov, M.A. Landau Levels in graphene in the presence of emergent gravity. Eur. Phys. J. B
**2016**, 89, 213. [Google Scholar] [CrossRef][Green Version] - Fialkovsky, I.V.; Vassilevich, D.V. Graphene through the looking glass of QFT. Mod. Phys. Lett. A
**2016**, 31, 1630047. [Google Scholar] [CrossRef][Green Version] - Fialkovsky, I.V.; Vassilevich, D.V. Quantum Field Theory in Graphene. Int. J. Mod. Phys. A
**2012**, 27, 1260007. [Google Scholar] [CrossRef][Green Version] - Volovik, G.E.; Zubkov, M.A. Emergent Weyl spinors in multi-fermion systems. Nucl. Phys. B
**2014**, 881, 514. [Google Scholar] [CrossRef] - Shapourian, H.; Hughes, T.L.; Ryu, S. The viscoelastic response of topological tight-binding models in 2d and 3d. Phys. Rev. B
**2015**, 92, 165131. [Google Scholar] [CrossRef][Green Version] - Cortijo, A.; Zubkov, M.A. Emergent gravity in the cubic tight-binding model of Weyl semimetal in the presence of elastic deformations. Ann. Phys.
**2016**, 366, 45. [Google Scholar] [CrossRef][Green Version] - Chernodub, M.N.; Zubkov, M. Chiral anomaly in Dirac semimetals due to dislocations. Phys. Rev. B
**2017**, 95, 115410. [Google Scholar] [CrossRef][Green Version] - Zubkov, M.A. Emergent gravity and chiral anomaly in Dirac semimetals in the presence of dislocations. Ann. Phys.
**2015**, 360, 655. [Google Scholar] [CrossRef][Green Version] - Sheng, D.N.; Sheng, L.; Weng, Z.Y. Quantum Hall effect in graphene: Disorder effect and phase diagram. Phys. Rev. B
**2006**, 73, 233406. [Google Scholar] [CrossRef][Green Version] - Hatsugai, Y.; Fukui, T.; Aoki, H. Topological analysis of the quantum Hall effect in graphene: Dirac-Fermi transition across van Hove singularities and edge versus bulk quantum numbers. Phys. Rev. B
**2006**, 74, 20541. [Google Scholar] [CrossRef][Green Version]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fialkovsky, I.V.; Zubkov, M.A.
Elastic Deformations and Wigner–Weyl Formalism in Graphene. *Symmetry* **2020**, *12*, 317.
https://doi.org/10.3390/sym12020317

**AMA Style**

Fialkovsky IV, Zubkov MA.
Elastic Deformations and Wigner–Weyl Formalism in Graphene. *Symmetry*. 2020; 12(2):317.
https://doi.org/10.3390/sym12020317

**Chicago/Turabian Style**

Fialkovsky, I.V., and M.A. Zubkov.
2020. "Elastic Deformations and Wigner–Weyl Formalism in Graphene" *Symmetry* 12, no. 2: 317.
https://doi.org/10.3390/sym12020317