Quantum Hall Conductivity in the Presence of Interactions
Abstract
:1. Introduction
2. Fixed Numbers of Electrons
3. The System Described by a Chemical Potential
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Commutators in Second Quantization
References
- Klitzing, K.V.; Dorda, G.; Pepper, M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett. 1980, 45, 494. [Google Scholar] [CrossRef] [Green Version]
- Thouless, D.J.; Kohmoto, M.; Nightingale, M.P.; den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 1982, 49, 405. [Google Scholar] [CrossRef] [Green Version]
- Avron, J.E.; Seiler, R.; Simon, B. Homotopy and Quantization in Condensed Matter Physics. Phys. Rev. Lett. 1983, 51, 51. [Google Scholar] [CrossRef] [Green Version]
- Avron, J.E.; Seiler, R.; Simon, B. Charge deficiency, charge transport and comparison of dimensions. Comm. Math. Phys. 1994, 159, 399–422. [Google Scholar] [CrossRef] [Green Version]
- Aizenman, M.; Graf, G.M. Localization bounds for an electron gas. J. Phys. A: Math. Gen. 1998, 31, 6783. [Google Scholar] [CrossRef]
- Bellissard, J.; van Els, A.; Schulz-Baldes, H. The Non-Commutative Geometry of the Quantum Hall Effect. J. Math. Phys. 1994, 35, 5373. [Google Scholar] [CrossRef] [Green Version]
- Altshuler, B.L.; Khmel’nitzkii, D.; Larkin, A.I.; Lee, P.A. Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. Phys. Rev. B 1980, 22, 5142. [Google Scholar] [CrossRef]
- Altshuler, B.L.; Aronov, A.G. Electron-Electron Interaction in Disordered Systems; Efros, A.L., Pollak, M., Eds.; North-Holland: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Zubkov, M.A.; Wu, X. Topological invariant in terms of the Green functions for the Quantum Hall Effect in the presence of varying magnetic field. arXiv 2019, arXiv:1901.06661. [Google Scholar]
- Zhang, C.X.; Zubkov, M.A. Influence of interactions on the anomalous quantum Hall effect. arXiv 2019, arXiv:1902.06545. [Google Scholar]
- Avron, J.; Seiler, R. Why Is the Hall Conductance Quantized? Open Problems in Mathematical Physics. Available online: http://web.math.princeton.edu/~aizenman/OpenProblems_MathPhys/ (accessed on 31 December 2019).
- Bieri, S.; Fröhlich, J. Physical principles underlying the quantum Hall effect. Compt. Rend. Phys. 2011, 12, 332–346. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, J.; Kerler, T. Universality in quantum Hall systems. Nucl. Phys. B 1991, 354, 369–417. [Google Scholar] [CrossRef]
- Fröhlich, J.; Studer, U.M. Gauge invariance and current algebra in nonrelativistic many-body theory. Rev. Mod. Phys 1993, 65, 733. [Google Scholar] [CrossRef]
- Fröhlich, J.; Studer, U.M.; Thiran, E. Quantum theory of large systems of non-relativistic matter. arXiv 1995, arXiv:cond-mat/9508062. [Google Scholar]
- Fröhlich, J.; Zee, A. Large scale physics of the quantum Hall fluid. Nucl. Phys. B 1991, 364, 517–540. [Google Scholar] [CrossRef]
- Wen, X.G. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 1990, 41, 12838–12844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.-C. The Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect. Int. J. Mod. Phys. B 1992, 6, 25–58. [Google Scholar] [CrossRef]
- Hastings, M.B.; Michalakis, S. Quantization of Hall Conductance for Interacting Electrons on a Torus. Comm. Math. Phys. 2015, 334, 433–471. [Google Scholar] [CrossRef] [Green Version]
- Bishop, M.; Nachtergaele, B.; Young, A. Spectral gap and edge excitations of d-dimensional PVBS models on half-spaces. arXiv 2015, arXiv:1509.07550. [Google Scholar] [CrossRef] [Green Version]
- Bravyi, S.; Hastings, M.B. A Short Proof of Stability of Topological Order under Local Perturbations. Comm. Math. Phys. 2011, 307, 609–627. [Google Scholar] [CrossRef] [Green Version]
- Bravyi, S.; Hastings, M.B.; Michalakis, S. Topological quantum order: Stability under local perturbations. J. Math. Phys. 2010, 51, 093512. [Google Scholar] [CrossRef] [Green Version]
- Datta, N.; Fernández, R.; Fröhlich, J. Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states. J. Stat. Phys. 1996, 84, 455. [Google Scholar] [CrossRef] [Green Version]
- Datta, N.; Fernández, R.; Fröhlich, J.; Rey-Bellet, L. Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy. Helv. Phys. Acta 1996, 69, 752. [Google Scholar]
- Michalakis, S.; Zwolak, J.P. Stability of Frustration-Free Hamiltonians. Comm. Math. Phys. 2013, 322, 277–302. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, A.; Mastropietro, V.; Porta, M. Universality of the Hall Conductivity in Interacting Electron Systems. Commun. Math. Phys. 2017, 349, 1107. [Google Scholar] [CrossRef] [Green Version]
- Hofstadter, D.R. Energy levels and wavefunctions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 1976, 14, 2239–2249. [Google Scholar] [CrossRef]
- Agazzi, A.; Eckmann, J.-P.; Graf, G.M. The Colored Hofstadter Butterfly for the Honeycomb Lattice. J. Stat. Phys. 2014, 156, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Haldane, F.D.M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett 1988, 61, 2015. [Google Scholar] [CrossRef]
- Varney, C.N.; Sun, K.; Rigol, M.; Galitski, V. Topological phase transitions for interacting finite systems. Phys. Rev. B 2011, 84, 241105. [Google Scholar] [CrossRef] [Green Version]
- Jotzu, G.; Messer, M.; Desbuquois, R.; Lebrat, M.; Uehlinger, T.; Greif, D.; Esslinger, T. Experimental realization of the topological Haldane model with ultracold fermions. Nature 2014, 515, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Coleman, S.; Hill, B. No more corrections to the topological mass term in QED3. Phys. Lett. B 1985, 159, 184. [Google Scholar] [CrossRef]
- Ishikawa, K.; Matsuyama, T. Magnetic Field Induced Multi-Component QED3 and Quantum Hall Effect. Z. Phys. C 1986, 33, 41–45. [Google Scholar] [CrossRef]
- Zhang, C.X.; Zubkov, M.A. A Note on Bloch theorem. arXiv 2019, arXiv:1909.12128. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, A.; Mastropietro, V.; Porta, M. Universality of conductivity in interacting graphene. Comm. Math. Phys. 2012, 311, 317–355. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, A.; Mastropietro, V.; Porta, M. Absence of interaction corrections in the optical conductivity of graphene. Phys. Rev. B 2011, 83, 195401. [Google Scholar] [CrossRef] [Green Version]
- Mastropietro, V. Non-Perturbative Renormalization; World Scientific: Singapore, 2008. [Google Scholar]
- Benfatto, G.; Mastropietro, V. On the density-density critical indices in interacting Fermi systems. Comm. Math. Phys. 2002, 231, 97–134. [Google Scholar] [CrossRef] [Green Version]
- Benfatto, G.; Mastropietro, V. Ward identities and chiral anomaly in the Luttinger liquid. Comm. Math. Phys. 2005, 258, 609–655. [Google Scholar] [CrossRef] [Green Version]
- Benfatto, G.; Mastropietro, V. Universality relations in non-solvable quantum spin chains. J. Stat. Phys. 2010, 138, 1084–1108. [Google Scholar] [CrossRef] [Green Version]
- Benfatto, G.; Falco, P.; Mastropietro, V. Universal relations for non solvable statistical models. Phys.Rev. Lett. 2010, 104, 075701. [Google Scholar] [CrossRef] [Green Version]
- Benfatto, G.; Falco, P.; Mastropietro, V. Universality of One-Dimensional Fermi Systems, I. Response Functions and Critical Exponents. Comm. Math. Phys. 2014, 330, 153–215. [Google Scholar] [CrossRef] [Green Version]
- Benfatto, G.; Falco, P.; Mastropietro, V. Universality of One-Dimensional Fermi Systems, II. The Luttinger Liquid Structure. Comm. Math. Phys. 2014, 330, 217–282. [Google Scholar] [CrossRef] [Green Version]
- Benfatto, G.; Gallavotti, G.; Procacci, A.; Scoppola, B. Beta function and Schwinger functions for a many fermions system in one dimension. Anomaly of the Fermi surface. Comm. Math. Phys. 1994, 160, 93–171. [Google Scholar] [CrossRef]
- Kubo, R.; Hasegawa, H.; Hashitsume, N. Quantum Theory of Galvanomagnetic Effect. I. Basic Considerations. J. Phys.Soc. Jpn. 1959, 14, 56–74. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zubkov, M. Quantum Hall Conductivity in the Presence of Interactions. Symmetry 2020, 12, 200. https://doi.org/10.3390/sym12020200
Wu X, Zubkov M. Quantum Hall Conductivity in the Presence of Interactions. Symmetry. 2020; 12(2):200. https://doi.org/10.3390/sym12020200
Chicago/Turabian StyleWu, Xi, and Mikhail Zubkov. 2020. "Quantum Hall Conductivity in the Presence of Interactions" Symmetry 12, no. 2: 200. https://doi.org/10.3390/sym12020200