# Symmetry of the Relativistic Two-Body Bound State

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Two-Body Bound State

## 3. The Spectrum

## 4. Some Examples

## 5. The Induced Representation

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Horwitz, L.P. Relativistic Quantum Mechanics; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Sklarz, S.; Horwitz, L.P. Relativistic mechanics of continuous media. Found. Phys.
**2001**, 31, 909–934. [Google Scholar] [CrossRef] - Horwitz, L.P.; Shashoua, S.; Schieve, W.C. A manifestly covariant relativistic Boltzmann equation for the evolution of a system of events. Phys. A Stat. Mech. Its Appl.
**1989**, 161, 300–338. [Google Scholar] [CrossRef] - Horwitz, L.P.; Arshansky, R.I. Relativistic Many Body Theory and Statistical Mechanics; Morgan and Claypool, IOP Concise Physics: San Rafael, CA, USA, 2018. [Google Scholar]
- Horwitz, L.P.; Piron, C. Relativistic dynamics. Helv. Phys. Acta
**1973**, 66, 316–326. [Google Scholar] - Fanchi, J.R.; Collins, R.E. Quantum mechanics of relativistic spinless particles. Found. Phys.
**1978**, 8, 851–877. [Google Scholar] [CrossRef] - Fanchi, J.R. Parametrized Relativistic Quantum Theory; Kluwer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Stueckelberg, E.C.G. Remarks on the creation of pairs of particles in the theory of relativity. Helv. Phys. Acta
**1941**, 14, 588–594. [Google Scholar] - Einstein, A. The Meaning of Relativity; Princeton University Press: Princeton, NJ, USA, 1922. [Google Scholar]
- Newton, I. Philosophia Naturalis Principia Mathematica; Benjamin Motte Sr.: London, UK, 1687. [Google Scholar]
- Cohen, I.B.; Whitman, A. The Principia: Mathematical Principles of Natural Philosophy: A New Translation; University of California Press: Berkeley, CA, USA, 1999. [Google Scholar]
- Feynman, R.P. Mathematical formulation of the quantum theory of electromagnetic interaction. Phys. Rev.
**1950**, 80, 440. [Google Scholar] [CrossRef] - Dirac, P.A.M. Quantum Mechanics, 3rd ed.; Oxford University Press: London, UK, 1947. [Google Scholar]
- Sommerfeld, A. Atombau und Spektrallinean; Friedrich Vieweig and Sohn: Braunschweig, Germany, 1939; Volume II, Chapter 4. [Google Scholar]
- Cook, J.L. Solution of the relativistic two-body problem II. Quantum mechanics. Aust. J. Phys.
**1972**, 25, 141–166. [Google Scholar] [CrossRef] [Green Version] - Zmuidzinas, J.S. Relativistic Quantum Mechanics. J. Math. Phys.
**1966**, 7, 764. [Google Scholar] [CrossRef] - Winternitz, P.; University of Montreal, Montreal, QC, Canada. Personal communication, 1985.
- Arshansky, R.I.; Horwit, L.P. The quantum relativistic two-body bound state, I. The spectrum. J. Math. Phys.
**1989**, 30, 66–80. [Google Scholar] [CrossRef] - Arshansky, R.I.; Horwit, L.P. The quantum relativistic Two-Body Bound State, II. The Induced Representation of SL(2,C). J. Math. Phys.
**1989**, 30, 380–392. [Google Scholar] [CrossRef] - Naimark, M.A. Linear Representations of the Lorentz Group; Pergamon Press: New York, NY, USA, 1964. [Google Scholar]
- Gel’fand, I.M.; Minlos, R.A.; Shapiro, Z.Y. Representations of the Rotation and Lorentz Groups and Their Applications; Pergamon Press: New York, NY, USA, 1963. [Google Scholar]
- Bargmann, V. Irreducible Unitary Representations of the Lorentz Group. Ann. Math.
**1947**, 48, 568–640. [Google Scholar] [CrossRef] - Bacry, M.; Tel Aviv University, Ramat Aviv, Israel. Personal communication, 1990.
- Shapere, A.; Wilczek, F. Geometric Phases in Physics; World Scientific: Singapore, 1989. [Google Scholar]
- Merzbacher, E. Quantum Mechanics, 2nd ed.; Wiley: New York, NY, USA, 1970. [Google Scholar]
- Gradshteyn, I.S.; Rhyzik, I.M. Table of Integrals, Series ad Products, 7th ed.; Jeffrey, A., Zwillinger, D., Eds.; Academic Press: London, UK, 2007. [Google Scholar]
- Wigner, E. On Unitary Representations of the Inhomogeneous Lorentz Group. Ann. Math.
**1939**, 40, 149–204. [Google Scholar] [CrossRef] - Ashtekar, A.; University of Syracuse, Syracuse, NY, USA. Personal communication, 1982.
- Chew, G. The Analytic S Matrix; Benjamin: New York, NY, USA, 1966. [Google Scholar]
- Hagedorn, R.; Montvey, I.; Rafelski, J. Hadronic Matter; Cabbibo, N., Sertorio, L., Eds.; Plenum: New York, NY, USA, 1978; p. 49. [Google Scholar]
- Hofstadter, R.; Bumiller, R.; Yearian, M.R. Electromagnetic structure of the proton and neutron. Rev. Mod. Phys.
**1958**, 30, 482. [Google Scholar] [CrossRef] - Itzykson, C.; Zuber, J.-B. Quantum Field Theory; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Feynman, R.P.; Kislinger, M.; Ravndal, F. Current Matrix Elements from a Relativistic Quark Model. Phys. Rev.
**1971**, D3, 2706. [Google Scholar] [CrossRef] [Green Version] - Kim, Y.S.; Noz, M.E. Covariant harmonic oscillators and excited baryon decays. Prog. Theor. Phys.
**1977**, 57, 1373–1386. [Google Scholar] [CrossRef] [Green Version] - Leutwyler, H.; Stern, J. Covariant quantum mechanics on a null plane. Phys. Lett.
**1977**, B69, 207–210. [Google Scholar] [CrossRef] - Dothan, Y.; Gell-Mann, M.; Ne’eman, Y. Series of hadronic energy levels as representations of non-compact groups. Phys. Lett.
**1965**, 17, 148–151. [Google Scholar] [CrossRef] - Land, M. Harmonic oscillator states with integer and non-integer orbital angular momentum. J. Phys. Conf. Ser.
**2011**, 330, 012014. [Google Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Horwitz, L.P.; Arshansky, R.I.
Symmetry of the Relativistic Two-Body Bound State. *Symmetry* **2020**, *12*, 313.
https://doi.org/10.3390/sym12020313

**AMA Style**

Horwitz LP, Arshansky RI.
Symmetry of the Relativistic Two-Body Bound State. *Symmetry*. 2020; 12(2):313.
https://doi.org/10.3390/sym12020313

**Chicago/Turabian Style**

Horwitz, L.P., and R.I. Arshansky.
2020. "Symmetry of the Relativistic Two-Body Bound State" *Symmetry* 12, no. 2: 313.
https://doi.org/10.3390/sym12020313