# Schwarzschild Field of a Proper Time Oscillator

## Abstract

**:**

## 1. Introduction

## 2. Proper Time Oscillator

## 3. Lorentz Covariant Plane Wave

## 4. Fourier Decomposition of the Proper Time Oscillation

## 5. Fictitious Radial Oscillation with Infinite Amplitude

## 6. Fictitious Radial Oscillation with Finite Amplitude

## 7. Measurements on the Thin Shell $\mathsf{\Sigma}$

## 8. Schwarzschild Field

## 9. Conclusions and Discussions

## Funding

## Conflicts of Interest

## References

- Gross, D. The role of symmetry in fundamental physics. Proc. Natl. Acad. Sci. USA
**1996**, 93, 14256–14259. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Livio, M. Why symmetry matters. Nature
**2012**, 490, 472–473. [Google Scholar] [CrossRef] [PubMed] - Yau, H.Y. Thin shell with fictitious motions. In Spacetime Physics 1907–2017; Duston, C., Holman, M., Eds.; Minkowski Institute Press: Montreal, QC, Canada, 2019. [Google Scholar]
- Jacobson, T. When is g
_{tt}g_{rr}= −1? Class. Quant. Grav.**2007**, 24, 5717. [Google Scholar] [CrossRef] - Lenz, W. 1944 unpublished work cited in A. Sommerfeld. In Electrodynamics (Lectures on Theoretical Physics Vol. 3); Academic Press: New York, NY, USA, 1967. [Google Scholar]
- Schiff, L. On experimental tests of the general theory of relativity. Am. J. Phys.
**1960**, 28, 340. [Google Scholar] [CrossRef] - Harwit, M. Astrophysical Concepts; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Rowlands, P. A simple approach to the experimental consequences of general relativity. Phys. Educ.
**1997**, 32, 49. [Google Scholar] [CrossRef] - Czerniawski, J. The possibility of a simple derivation of the Schwarzschild metric. arXiv
**2006**, arXiv:gr-qc/0611104. [Google Scholar] - Cuzinatto, R.; Pimental, B.; Pompeia, P. Schwarzschild and de Sitter solution from the argument by Lenz and Sommerfiled. Am. J. Phys.
**2011**, 79, 662. [Google Scholar] [CrossRef] [Green Version] - Schild, A. Equivalence Principle and Red-Shift Measurements. Am. J. Phys.
**1960**, 28, 778. [Google Scholar] [CrossRef] - Rindler, W. Counterexample to the Lenz-Schiff Argument. Am. J. Phys.
**1968**, 36, 540. [Google Scholar] [CrossRef] - Sacks, W.; Ball, J. Simple derivations of the Schwarzschild metric. Am. J. Phys.
**1968**, 36, 240. [Google Scholar] [CrossRef] - Gruber, R.; Price, R.; Matthews, S.; Cordwell, W.; Wagner, L. The impossibility of a simple derivation of the Schwarzschild metric. Am. J. Phys.
**1988**, 56, 265. [Google Scholar] [CrossRef] - Kassner, K. Classroom reconstruction of the Schwarzschild metric. Eur. J. Phys.
**2015**, 36, 065031. [Google Scholar] [CrossRef] [Green Version] - Kassner, K. A physics-first approach to the Schwarzschild metric. Adv. Stud. Theor. Phys.
**2017**, 11, 179–212. [Google Scholar] [CrossRef] [Green Version] - Birkhoff, G. Relativity and Modern Physics; Harvard University Press: Cambridge, MA, USA, 1923. [Google Scholar]
- Schmidt, H. The tetralogy of Birkhoff theorems. Gen. Rel. Grav.
**2013**, 45, 395. [Google Scholar] [CrossRef] [Green Version] - Wald, R. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Catillon, P. A search for the de Broglie particle internal clock by means of electron channeling. Found. Phys.
**2008**, 38, 659–664. [Google Scholar] [CrossRef] - Hawking, S.; Penrose, R. The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A
**1970**, 314, 529–548. [Google Scholar] - Hawking, S.; Ellis, G. The Large-Scale Structure of Space–Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yau, H.
Schwarzschild Field of a Proper Time Oscillator. *Symmetry* **2020**, *12*, 312.
https://doi.org/10.3390/sym12020312

**AMA Style**

Yau H.
Schwarzschild Field of a Proper Time Oscillator. *Symmetry*. 2020; 12(2):312.
https://doi.org/10.3390/sym12020312

**Chicago/Turabian Style**

Yau, Hou.
2020. "Schwarzschild Field of a Proper Time Oscillator" *Symmetry* 12, no. 2: 312.
https://doi.org/10.3390/sym12020312