Consequences of f(?) Cosmology in Thermal Leptogenesis and Gravitino Late Abundance
Abstract
:1. Introduction
2. Thermal Leptogenesis in Modified Cosmologies
2.1. Kinetic Equations
2.2. The Gravitino Problem
3. Examples of Non Standard Cosmologies
3.1. Cosmology
3.2. Shear Dominated Universe
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Thermal Leptogenesis Scenario
References
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models without Singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Sami, M. Models of dark energy. Lect. Notes Phys. 2007, 720, 219. [Google Scholar]
- Sawicki, I.; Hu, W. Stability of Cosmological Solution in f(R) Models of Gravity. Phys. Rev. D 2007, 75, 127502. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Barrow, J.D.; Mota, D.F. The Cosmology of Modified Gauss-Bonnet Gravity. Phys. Rev. D 2007, 76, 044027. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D. Scalar–tensor cosmologies. Phys. Rev. D 1993, 47, 5329. [Google Scholar] [CrossRef]
- Clifton, T.; Barrow, J.D. The Power of General Relativity. Phys. Rev. D 2005, 72, 103005. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Lambiase, G. Higher order corrections to the effective gravitational action from Noether symmetry approach. Gen. Relativ. Gravit. 2000, 32, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Lambiase, G. Nonminimal derivative coupling and the recovering of cosmological constant. Gen. Relativ. Gravit. 1999, 31, 1005. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Lambiase, G.; Schmidt, H.J. Nonminimal derivative couplings and inflation in generalized theories of gravity. Ann. Phys. 2000, 9, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Inhomogeneous equation of state of the universe: Phantom era, future singularity and crossing the phantom barrier. Phys. Rev. D 2005, 72, 023003. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, G.K.; Mohanty, S.; Lambiase, G. Testing theories of gravity and supergravity with inflation and observations of the cosmic microwave background. Int. J. Mod. Phys. D 2017, 26, 1730023. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, A.; Capozziello, S.; Vitiello, G. Neutrino mixing as a source of dark energy. Phys. Lett. A 2007, 363, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, A.; Capozziello, S.; Vitiello, G. Dark energy and particle mixing. Phys. Lett. A 2007, 373, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, A. Dark matter and dark energy induced by condensates. Adv. High Energy Phys. 2016, 2016, 8089142. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, A. Cosmological Effects of Quantum Vacuum Condensates. Galaxies 2017, 5, 98. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, A. Quantum vacuum, dark matter, dark energy and spontaneous supersymmetry breaking. Adv. High Energy Phys. 2018, 2018, 9840351. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, A.; De Martino, I.; Lambiase, G.; Stabile, A. Axion–photon mixing in quantum field theory and vacuum energy. Phys. Lett. B 2019, 790, 427. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L. Effective Action in Quantum Gravity; IOP: Bristol, UK, 1992. [Google Scholar]
- Barth, N.H.; Christensen, S. Quantizing Fourth Order Gravity Theories. 1. The Functional Integral. Phys. Rev. D 1983, 28, 8. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R.S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Groom, D.E.; Hook, I.M.; et al. Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications. Nature 1998, 391, 51. [Google Scholar] [CrossRef] [Green Version]
- Schelke, M.; Catena, R.; Fornengo, N.; Masiero, A.; Pietroni, M. Constraining pre Big-Bang-Nucleosynthesis Expansion using Cosmic Antiprotons. Phys. Rev. D 2006, 74, 083505. [Google Scholar] [CrossRef] [Green Version]
- Gelmini, G.; Gondolo, P. DM Production Mechanisms; Bertone, G., Ed.; Particle dark matter 121–141; Cambridge University Press: Cambridge, UK, 2010; arXiv:1009.3690. [Google Scholar]
- Randal, L.; Sundrum, R. An Alternative to Compactification. Phys. Rev. Lett. 1991, 83, 4690. [Google Scholar] [CrossRef] [Green Version]
- Profumo, S.; Ullio, P. SUSY dark matter and quintessence. J. Cosmol. Astropart. Phys. 2003, 0311, 006. [Google Scholar] [CrossRef] [Green Version]
- Catena, R.; Fornengo, N.; Masiero, A.; Pietroni, M.; Schelke, M. Enlarging mSUGRA parameter space by decreasing pre-BBN Hubble rate in Scalar-Tensor Cosmologies. JHEP J. High Energy Phys. 2008, 10, 003. [Google Scholar] [CrossRef]
- Catena, R.; Fornengo, N.; Pato, M.; Pieri, L.; Masiero, A. Thermal Relics in Modified Cosmologies: Bounds on Evolution Histories of the Early Universe and Cosmological Boosts for PAMELA. Phys. Rev. D 2010, 81, 123522. [Google Scholar] [CrossRef] [Green Version]
- Kamionkowski, M.; Turner, M.S. Thermal Relics: Do We Know Their Abundances? Phys. Rev. D 1990, 42, 3310. [Google Scholar] [CrossRef] [Green Version]
- Santiago, D.I.; Kalligas, D.; Wagoner, R.V. Scalar–tensor cosmologies and their late time evolution. Phys. Rev. D 1998, 58, 124005. [Google Scholar] [CrossRef] [Green Version]
- Salati, P. Quintessence and the relic density of neutralinos. Phys. Lett. B 2003, 571, 121. [Google Scholar] [CrossRef] [Green Version]
- Lambiase, G.; Mohanty, S.; Stabile, A. PeV IceCube signals and Dark Matter relic abundance in modified cosmologies. Eur. Phys. J. C 2018, 78, 350. [Google Scholar] [CrossRef]
- Buoninfante, L.; Lambiase, G. Cosmology with bulk viscosity and the gravitino problem. Eur. Phys. J. C 2017, 77, 287. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.J.H.; Freese, K. Cosmological challenges in theories with extra dimensions and remarks on the horizon problem. Phys. Rev. D 2000, 61, 023511. [Google Scholar] [CrossRef] [Green Version]
- Catena, R.; Fornengo, N.; Masiero, A.; Pietroni, M.; Rosati, F. Dark matter relic abundance and scalar–tensor dark energy. Phys. Rev. D 2004, 70, 063519. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef] [Green Version]
- Lambiase, G. Dark matter relic abundance and big bang nucleosynthesis in Horava’s gravity. Phys. Rev. D 2011, 83, 107501. [Google Scholar] [CrossRef]
- Capozziello, S.; Lambiase, G.; Saridakis, E.N. Constraining f(T) teleparallel gravity by Big Bang Nucleosynthesis. Eur. Phys. J. C 2017, 77, 576. [Google Scholar] [CrossRef]
- Fukugita, M.; Yanagida, T. Baryogenesis Without Grand Unification. Phys. Lett. B 1986, 174, 45–47. [Google Scholar] [CrossRef]
- Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 1985, 155, 36. [Google Scholar] [CrossRef]
- Fong, C.S.; Nardi, E.; Riotto, A. Leptogenesis in the Universe. Adv. High Energy Phys. 2012, 2012, 158303. [Google Scholar] [CrossRef]
- Buchmuller, W.; Di Bari, P.; Plumacher, M. Leptogenesis for pedestrians. Ann. Phys. 2005, 315, 305. [Google Scholar] [CrossRef] [Green Version]
- Lambiase, G.; Mohanty, S.; Prasanna, A.R. Neutrino coupling to cosmological background: A review on gravitational Baryo/Leptogenesis. Int. J. Mod. Phys. D 2013, 22, 1330030. [Google Scholar] [CrossRef] [Green Version]
- Okada, N.; Seto, O. Thermal leptogenesis in brane world cosmology. Phys. Rev. D 2006, 73, 063505. [Google Scholar] [CrossRef] [Green Version]
- Fuji, M.; Hamaguchi, K.; Yanagida, T. Leptogenesis with almost degenerate majorana neutrinos. Phys. Rev. D 2002, 65, 115012. [Google Scholar] [CrossRef] [Green Version]
- Davidson, S.; Ibarra, A. A Lower bound on the right-handed neutrino mass from leptogenesis. Phys. Lett. B 2002, 535, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Fischler, W.; Giudice, G.F.; Leigh, R.G.; Paban, S. Constraints on the baryogenesis scale from neutrino masses. Phys. Lett. B 1991, 258, 45–48. [Google Scholar] [CrossRef]
- Buchmuller, W.; Yanagida, T. Baryogenesis and the scale of B-L breaking. Phys. Lett. B 1993, 302, 240–244. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Linde, A.D. Is It Easy to Save the Gravitino? Phys. Lett. B 1984, 138, 265–268. [Google Scholar] [CrossRef]
- Yu Khlopov, M.; Barrau, A.; Grain, J. Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe. Class. Quant. Grav. 2006, 23, 1875. [Google Scholar] [CrossRef]
- Buchmüller, W.; Di Bari, P.; Plumacher, M. Cosmic microwave background, matter–antimatter asymmetry and neutrino masses. Nucl. Phys. B 2002, 643, 367. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.R.; Kim, J.E.; Nanopoulos, D.V. Cosmological Gravitino Regeneration and Decay. Phys. Lett. B 1984, 145, 181. [Google Scholar] [CrossRef] [Green Version]
- Cyburt, R.H.; Ellis, J.R.; Fields, B.D.; Olive, K.A. Updated nucleosynthesis constraints on unstable relic particles. Phys. Rev. D 2003, 67, 103521. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, M.; Kohri, K.; Moroi, T. Adronic decay of late–decaying particles and Big-Bang Nucleosynthesis. Phys. Lett. B 2005, 625, 7. [Google Scholar] [CrossRef] [Green Version]
- Iminniyaz, H.; Salai, B.; Lv, G.-L. Relic Density of Asymmetric Dark Matter in Modified Cosmological Scenarios. Commun. Theor. Phys. 2018, 70, 602. [Google Scholar] [CrossRef] [Green Version]
- Poulin, A. Dark Matter freezeout in modified cosmological scenarios. Phys. Rev. D 2019, 100, 043022. [Google Scholar] [CrossRef] [Green Version]
- Linder, E.V. Einstein’s other gravity and the acceleration of the Universe. Phys. Rev. D 2010, 81, 127301. [Google Scholar] [CrossRef] [Green Version]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesseris, S.; Basilakos, S.; Saridakis, E.N.; Perivolaropoulos, L. Viable f(T) models are practically indistinguishable from ΛCDM. Phys. Rev. D 2013, 88, 103010. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime. Phys. Rev. D 2008, 78, 124019. [Google Scholar] [CrossRef] [Green Version]
- D’Eramo, F.; Fernandez, N.; Profumo, S. When the Universe Expands Too Fast: Relentless Dark Matter. J. Cosmol. Astropart. Phys. 2017, 2017, 012. [Google Scholar] [CrossRef] [Green Version]
- Ellis, G.F.R.; MacCallum, M.A.H. A Class of homogeneous cosmological models. Commun. Math. Phys. 1969, 12, 108–141. [Google Scholar] [CrossRef]
- Ryan, L.C. Shepley, Homogenous Relativistic Cosmologies; Princeton University Press: Princeton, NJ, USA, 1975. [Google Scholar]
- Ellis, G.F.R.; van Elst, H. Cosmological models (Cargèse lectures 1998). NATO Adv. Study Inst. Ser. C. Math. Phys. Sci. 1999, 541, 1–116. [Google Scholar]
- Nir, Y. Introduction to leptogenesis. arXiv 2007, arXiv:hep-ph/0702199. [Google Scholar]
- Covi, L.; Roulet, E.; Vissani, F. CP violating decays in leptogenesis scenarios. Phys. Lett. B 1996, 384, 169. [Google Scholar] [CrossRef] [Green Version]
- Ashie, Y.; Hosaka, J.; Ishihara, K.; Itow, Y.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; et al. Measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I. Phys. Rev. D 2005, 71, 112005. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capolupo, A.; Giampaolo, S.M.; Lambiase, G.; Quaranta, A. Consequences of f(?) Cosmology in Thermal Leptogenesis and Gravitino Late Abundance. Symmetry 2020, 12, 300. https://doi.org/10.3390/sym12020300
Capolupo A, Giampaolo SM, Lambiase G, Quaranta A. Consequences of f(?) Cosmology in Thermal Leptogenesis and Gravitino Late Abundance. Symmetry. 2020; 12(2):300. https://doi.org/10.3390/sym12020300
Chicago/Turabian StyleCapolupo, Antonio, Salvatore Marco Giampaolo, Gaetano Lambiase, and Aniello Quaranta. 2020. "Consequences of f(?) Cosmology in Thermal Leptogenesis and Gravitino Late Abundance" Symmetry 12, no. 2: 300. https://doi.org/10.3390/sym12020300
APA StyleCapolupo, A., Giampaolo, S. M., Lambiase, G., & Quaranta, A. (2020). Consequences of f(?) Cosmology in Thermal Leptogenesis and Gravitino Late Abundance. Symmetry, 12(2), 300. https://doi.org/10.3390/sym12020300