Mean Value of the General Dedekind Sums over Interval \({[1,\frac{q}{p})}\)
Abstract
:1. Introduction
2. Some Lemmas
3. Proof of Theorem and Corollaries
Author Contributions
Funding
Conflicts of Interest
References
- Carlitz, L. The reciprocity theorem of Dedekind sums. Pac. J. Math. 1953, 3, 513–522. [Google Scholar] [CrossRef]
- Conrey, J.B.; Fransen, E.; Klein, R.; Scott, C. Mean values of Dedekind sums. J. Number Theory 1996, 41, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Jia, C. On the mean values of Dedekind sums. J. Number Theory 2001, 87, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W. On the mean values of Dedekind sums. J. Theor. Nombres Bordx. 1996, 8, 429–442. [Google Scholar] [CrossRef]
- Zhang, W. A note on the mean square value of the Dedekind sums. Acta Math. Hung. 2000, 86, 275–289. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, Y. Partial sums of Dedekind sums. Prog. Nat. Sci. 2000, 4, 314–319. [Google Scholar]
- Zhang, W. On the general Dedekind sums and one kind identities of Dirichlet L-functions. Acta Math. Sin. 2001, 44, 269–272. [Google Scholar]
- Kim, T.; San Kim, D.; Lee, H.; Jang, L.C. Identities on poly-dedekind sums. Adv. Differ. Equ. 2020, 1, 1–13. [Google Scholar]
- Ma, Y.; San Kim, D.; Lee, H.; Kim, T. Poly-Dedekind sums associated with poly-Bernoulli functions. J. Inequal. Appl. 2020, 248, 1–10. [Google Scholar]
- Kim, T. Note on q-dedekind type sums related to q-euler polynomials. Glasg. Math. J. 2012, 54, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Shparlinski, I.E. On some weighted average value of L-functions. Bull. Aust. Math. Soc 2009, 79, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xu, Z.; Wang, N. Mean values of generalized Dedekind sums over short intervals. Acta Arith. 2020, 193, 95–108. [Google Scholar] [CrossRef]
- Zhang, W. On a Cochrane sum and its hybrid mean value formula(II). J. Math. Appl. 2002, 276, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Peral, C.J. Character sums and explicit estimates for L-functions. Contemp. Math. 1995, 189, 449–459. [Google Scholar]
- Zhang, W.; Yi, Y.; He, X. On the 2k-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums. J. Number Theory 2000, 84, 199–213. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Xu, Z. Mean Value of the General Dedekind Sums over Interval \({[1,\frac{q}{p})}\). Symmetry 2020, 12, 2079. https://doi.org/10.3390/sym12122079
Liu L, Xu Z. Mean Value of the General Dedekind Sums over Interval \({[1,\frac{q}{p})}\). Symmetry. 2020; 12(12):2079. https://doi.org/10.3390/sym12122079
Chicago/Turabian StyleLiu, Lei, and Zhefeng Xu. 2020. "Mean Value of the General Dedekind Sums over Interval \({[1,\frac{q}{p})}\)" Symmetry 12, no. 12: 2079. https://doi.org/10.3390/sym12122079