# Modular Edge-Gracefulness of Graphs without Stars

^{*}

## Abstract

**:**

## 1. Introduction

**Theorem**

**1**

**Theorem**

**2**

**Lemma**

**1**

**Corollary**

**1**

**Conjecture**

**1**

## 2. ${\mathbb{Z}}_{n}$-Irregular Labeling

**Corollary**

**2.**

**Lemma**

**2.**

**Proof.**

**Theorem**

**3.**

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Chartrand, G.; Jacobson, M.S.; Lehel, J.; Oellermann, O.; Ruiz, S.; Saba, F. Irregular networks. Congr. Numer.
**1988**, 64, 187–192. [Google Scholar] - Nierhoff, T. A tight bound on the irregularity strength of graphs. SIAM J. Discrete Math.
**2000**, 13, 313–323. [Google Scholar] [CrossRef] - Aigner, M.; Triesch, E. Irregular assignments of trees and forests. SIAM J. Discrete Math.
**1990**, 3, 439–449. [Google Scholar] [CrossRef] - Kalkowski, M.; Karoński, M.; Pfender, F. A new upper bound for the irregularity strength of graphs. SIAM J. Discrete Math.
**2011**, 25, 1319–1321. [Google Scholar] [CrossRef] - Lo, S.P. On edge-graceful labelings of graphs. Congr. Numer.
**1985**, 50, 231–241. [Google Scholar] - Fujie-Okamoto, F.; Jones, R.; Kolasinski, K.; Zhang, P. On Modular Edge-Graceful Graphs. Graphs Combin.
**2013**, 29, 901–912. [Google Scholar] [CrossRef] - Jones, R. Modular and Graceful Edge Colorings of Graphs. Ph.D. Thesis, Western Michigan University, Kalamazoo, MI, USA, 2011; p. 158. [Google Scholar]
- Jones, R.; Zhang, P. Nowhere-zero modular edge-graceful graphs. Discuss. Math. Graph Theory
**2012**, 32, 487–505. [Google Scholar] [CrossRef] - Gnanajothi, R.B. Topics in Graph Theory. Ph.D. Thesis, Madurai Kamaraj University, Tamil Nadu, India, 1991. [Google Scholar]
- Anholcer, M.; Cichacz, S.; Przybyło, J. Linear bounds on nowhere-zero group irregularity strength and nowhere-zero group sum chromatic number of graphs. Appl. Math. Comput.
**2019**, 343, 149–155. [Google Scholar] [CrossRef][Green Version] - Anholcer, M.; Cichacz, S. Group irregular labelings of disconnected graphs. Contrib. Discret. Math.
**2017**, 12, 158–166. [Google Scholar] - Anholcer, M.; Cichacz, S.; Jura, R.; Marczyk, A. Note on group irregularity strength of disconnected graphs. Open Math.
**2018**, 16, 154–160. [Google Scholar] [CrossRef] - Zeng, X. On zero-sum partitions of abelian groups. Integers
**2015**, 15, A44. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cichacz, S.; Szopa, K. Modular Edge-Gracefulness of Graphs without Stars. *Symmetry* **2020**, *12*, 2013.
https://doi.org/10.3390/sym12122013

**AMA Style**

Cichacz S, Szopa K. Modular Edge-Gracefulness of Graphs without Stars. *Symmetry*. 2020; 12(12):2013.
https://doi.org/10.3390/sym12122013

**Chicago/Turabian Style**

Cichacz, Sylwia, and Karolina Szopa. 2020. "Modular Edge-Gracefulness of Graphs without Stars" *Symmetry* 12, no. 12: 2013.
https://doi.org/10.3390/sym12122013