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Abstract: We investigate the modular edge-gracefulness k(G) of a graph, i.e., the least integer k such
that taking a cyclic group Zk of order k, there exists a function f : E(G) → Zk so that the sums of
edge labels incident with every vertex are distinct. So far the best upper bound on k(G) for a general
graph G is 2n, where n is the order of G. In this note we prove that if G is a graph of order n without
star as a component then k(G) = n for n 6≡ 2 (mod 4) and k(G) = n + 1 otherwise. Moreover we
show that for such G for every integer t ≥ k(G) there exists a Zt-irregular labeling.

Keywords: graph labeling; modular edge-gracefulness; cyclic abelian group; group irregularity
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1. Introduction

Let G = (V, E) be a simple finite graph of order |V| = n. The neighborhood N(v) of a vertex v
is the set of vertices adjacent to x, and the degree d(v) of v is N(v), the size of the neighborhood of v.
The minimal vertex degree is denoted by δ.

The irregularity strength is the smallest integer s(G) = s for which there exists an edge labeling
f : E(G)→ {1, . . . , s} such that ∑e:u∈e f (e) 6= ∑e:v∈e f (e) for all pairs of different vertices u, v ∈ V(G).
The problem of finding s(G) was introduced by Chartrand et al. in [1]. An upper bound s(G) 6 n− 1
was proved for all graphs containing no isolated edges and at most one isolated vertex, except for the
graph K3 [2,3]. A better upper bound can be improved for graphs with sufficiently large minimum
degree δ. Best published result is due to Kalkowski, Karoński and Pfender (see [4]) is s(G) 6 6n/δ for
δ > 6.

On the other hand Lo in [5] defined edge graceful labelings. A graph G of order n and size m is
edge-graceful if there exists a bijective mapping f : E(G)→ {1, 2, . . . , m} such ∑e:u∈e f (e) 6≡ ∑e:v∈e f (e)
(mod n) for all pairs of different vertices u, v ∈ V(G). Jones combined the concepts of graceful labeling
and irregular labeling into Zk-irregular labeling ([6–8]). He defined the modular edge-gracefulness of
graphs as the smallest integer k(G) = k ≥ n for which there exists an edge labeling f : E(G) → Zk
such that the induced vertex labeling w : V(G)→ Zk defined by

w(u) = ∑
v∈N(u)

f (uv) (mod k)

is one-to-one. For a vertex u we call w(u) the weighted degree of u.
Verifying a conjecture by Gnanajothi on trees [9], Fujie-Okamoto, Jones, Kolasinski and Zhang [6]

showed that every tree of order n > 3 has the modular edge-gracefulness equal to n if and only if
n 6≡ 2 (mod 4) and moreover proved that it is true for any connected graph of order n > 3. Formally:
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Theorem 1 ([6]). Let G be a connected graph of order n ≥ 3, then

k(G) =

{
n, if n 6≡ 2 (mod 4),
n + 1, if n ≡ 2 (mod 4).

For a non-connected graph G with no K2 components, it is known that k(G) ≤ 2|V(G)| [10].
Moreover Anholcer and Cichacz proved the following.

Theorem 2 ([11]). Let G be a graph of order n with no components of order less than 3 and no K1,2u+1

components for any integer u ≥ 1. Then:

k(G) = n, if n ≡ 1 (mod 2),
k(G) = n + 1, if n ≡ 2 (mod 4),
k(G) ≤ n + 1, if n ≡ 0 (mod 4).

Lemma 1 ([11]). Let G be a graph of order n with no components of order less than 3 and no K1,2u+1 components
for any integer u ≥ 1. Then for every odd integer t ≥ n there exists a Zt-irregular labeling.

Corollary 1 ([11]). Let G be a disconnected graph of order n with all the bipartite components having both
color classes of even order and with no component of order less than 3. Let s = n + 1 if n ≡ 2 (mod 4) and
s = n otherwise. Then for every integer t ≥ s there exists a Zt-irregular labeling.

In this paper we would like to develop the method of augmented walks from [11] in order to
solve the following conjecture:

Conjecture 1 ([12]). Let G be a graph of order n with no K1,u components for any integer u ≥ 0. Then k(G) =

n if n 6≡ 2 (mod 4) and k(G) = n + 1 otherwise.

2. Zn-Irregular Labeling

Given any two vertices x1 and x2 belonging to the same connected component of G, there exist
walks from x1 to x2. Some of them may consist of an even number of vertices (some of them being
repetitions). We are going to call them even walks. Analogously, the walks with an odd number of
vertices will be called odd walks. We will always choose a shortest even or a shortest odd walk from
x1 to x2 (note that sometimes it is not a path).

As in [11] we start with 0 on all the edges of G. Then, in every step we will choose x1 and x2 and
add some labels to all the edges of the chosen walk from x1 to x2. To be more specific, we will add
some element a of the group to the labels of all the edges having an odd position on the walk (starting
from x1) and −a to the labels of all the edges having even position. It is possible that some labels will
be modified more than once, as the walk does not need to be a path. We will denote such situation
with φe(x1, x2) = a if we label a shortest even walk and φo(x1, x2) = a if we label the shortest odd
walk. Observe that putting φe(x1, x2) = a results in adding a to the weighted degrees of both x1 and
x2, while φo(x1, x2) = a means adding a to the weighted degree of x1 and −a to the weighted degree
of x2. In both cases, the operation does not change the weighted degree of any other vertex of the walk.
Note that if some component G1 of G is not bipartite, then for any vertices x1, x2 ∈ V(G1) there exist
both even and odd walks.

Differently than in [11], where the zero-sum cyclic group was decomposed into zero-sum subsets,
we will find some zero-sum subsets in the cyclic group that is not zero-sum itself. Therefore, in the
proof we shall apply the following corollary of Lemma 3.2. from [13].

Corollary 2. Let n ≡ 0 (mod 4) and m, l be natural numbers such that 3m + 2l = n − 2. Then the
set S = Zn \ {0, n

2 } can be partitioned into m triples A1, A2, . . . , Am and l pairs B1, B2, . . . , Bl such that
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∑x∈Ai
x = 0 for i = 1, 2, . . . , m and ∑x∈Bj

x = 0 for j = 1, 2, . . . , l. Moreover there exists such partition of S
fulfilling the above conditions that if m ≥ n

4 , then n
4 ∈ Ai for some i, whereas for m < n

4 we have n
4 ∈ Bj for

some j.

Lemma 2. Let G be a graph of order n with no K1,u components for any integer u ≥ 0. Let s = n + 1 if n ≡ 2
(mod 4) and s = n otherwise. Then for every integer t ≥ s there exists a Zt-irregular labeling of G.

Proof. By Theorems 1 and 2 we can assume that G is disconnected. We are going to divide the vertices
of G into triples and pairs. Namely, we will take one triple from each component (or part of a bipartite
component) which has odd order and all the remaining vertices we will join into pairs, then using the
partition of the group Zt from Corollary 2 we will arrive distinct weighted degrees of vertices. For this
process we need some notation. Let p1 be the number of bipartite components of G with both color
classes odd, p2 with both classes even and p3 with one class odd and one even. Let p4 be the number
of remaining components of odd order and p5—the number of remaining components of even order.
The number of triples equals to 2p1 + p3 + p4. The remaining vertices form the pairs. Observe that by
Corollary 1 we can assume that p1 + p3 > 0. Moreover by Lemma 1 we assume that t is even.

We start with the case t = n ≡ 0 (mod 4) what implies 2p1 + p3 + p4 − 2 ≥ 0. Let m = p3 + p4 if
(p1 = 0 and p3 + p4 − 2 ≥ n

4 ) and m = 2p1 + p3 + p4 − 2 otherwise. Let l = (n− 2− 3m)/2. Note that
l ≥ 0, therefore the set S = Zn \ {0, n

2 } can be partitioned into m triples A1, A2, . . . , Am and l pairs
B1, B2, . . . , Bl such that ∑x∈Ai

x = 0 for i = 1, 2, . . . , m and ∑x∈Bj
x = 0 for j = 1, 2, . . . , l by Corollary 2.

Let Ai = {ai, bi, ci} for i = 1, 2, . . . , m and let Bj = {dj,−dj} for j = 1, . . . , l. It is easy to observe that
for a given element g ∈ S not belonging to any triple, we have (g,−g) = Bj for some j.

Let us start the labeling. For both vertices and labels, we are numbering the pairs and triples
consecutively, in the same order as they appear in the labeling algorithm described below, every time
using the lowest index that has not been used so far (independently for the lists of couples and triples).

Given any bipartite component G with both color classes even, we divide the vertices of every
color class into pairs (x1

j , x2
j ), putting

φo(x1
j , x2

j ) = dj

for every such pair. This gives as weighted degrees w(x1
j ) = dj and w(x2

j ) = −dj. We proceed in a
similar way in the case of all the non-bipartite components of even order, coupling the vertices of every
such component in any way.

Note, that since we use Corollary 2, we still need to find a way to include 0 and n
2 as weighted

degrees, in order to do that, we will consider now two cases on p1.
Case 1. p1 > 0
Note that in this case l ≥ 2. If both color classes of a bipartite component are of odd order,

then they both have at least 3 vertices. We choose three of them, denoted with xj, yj and zj, in one class
and another three, xj+1, yj+1 and zj+1, in another one.

Suppose first that n
4 ∈ Ai for some i. Without loss of generality we can assume that i = 1 and

a1 = n
4 . Note that b1 + c1 = − n

4 . We apply

φe(x1, z2) = b1,
φe(y1, z2) = c1,
φe(z1, z2) =

n
2 ,

φo(x2, y2) = dl .

Observe that w(x1) = b1, w(y1) = c1, w(z1) = n
2 , w(x2) = dl , w(y2) = −dl and

w(z2) = b1 + c1 +
n
2 = n

4 . Taking Am+1 = Bl−1 ∪ {0} we proceed with the remaining vertices of these
components as in the case when both color classes are even.
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If now n
4 ∈ Bj for some j. Without loss of generality we can assume that j = l and dl = n

4 .
We apply

φe(x1, x2) = dl ,
φe(y1, x2) =

n
2 ,

φe(z1, x2) = 0,
φo(y2, z2) = dl−1.

Observe that w(x1) = dl =
n
4 , w(y1) =

n
2 , w(z1) = 0, w(x2) =

n
4 + n

2 = 3n
4 = −dl , w(y2) = dl−1

and w(z2) = −dl−1. We proceed with the remaining vertices of these components as in the case when
both color classes are even.

In the rest of bipartite component with both odd color classes, we apply:

φe(xj, zj+1) = aj,
φe(yj, zj+1) = bj,
φe(zj, zj+1) = cj,
φe(xj+1, zj) = aj+1,
φe(yj+1, zj) = bj+1,
φe(zj+1, zj) = cj+1.

In the case of non-bipartite components of odd order, we choose three vertices. We apply

φe(xj, zj) = aj,
φe(yj, zj) = bj,
φe(zj, zj) = cj.

Finally for bipartite components of odd order we choose four vertices xj, yj, zj and v2 (v2 belongs
to the even color class and three other vertices to the odd one). We apply

φe(xj, v2) = aj,
φe(yj, v2) = bj,
φe(zj, v2) = cj.

We proceed with the remaining vertices of these components as in the case when both color
classes are even.

The labeling defined above is Zn-irregular. Indeed, for j > 2 in the jth triple of vertices the
weighted degrees are equal to w(xj) = aj, w(yj) = bj and w(zj) = cj and in the jth pair we have
w(x1

j ) = dj and w(x2
j ) = −dj.

Case 2. p1 = 0.
Note that by Corollary 1 p3 > 0, what implies that p3 + p4 − 2 ≥ 0.
Assume first that p3 + p4 − 2 < n

4 . Then m = p3 + p4 − 2, l ≥ 3 and moreover n
4 ∈ Bj for

some j by Corollary 2. Without loss of generality we can assume that j = l and it is still unused.
Let Am+1 = Bl−2 ∪ {0}. For the case of the non-bipartite component of odd order we choose three
vertices xj, yj, zj from the odd color class. For of such a component let t2, h2 be two vertices from the
even class. We apply

φe(x1, t2) = dl ,
φe(x1, h2) =

n
2 ,

φo(y1, z1) = dl−1.

Observe that w(x1) = dl +
n
2 = −dl , w(y1) = dl−1, w(z1) = −dl−1, w(t2) = dl , w(h2) = n

2 .
We proceed with the remaining vertices of these components as in the case when both color classes
are even.
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If now p2 + p4 − 2 ≥ n
4 , then m = p3 + p4 ≥ n

4 and n
4 ∈ Ai for some i by Corollary 2. Without loss

of generality we can assume that i = 1 and a1 = n
4 . We apply

φe(x1, t2) = b1,
φe(y1, t2) = c1,
φe(z1, t2) =

n
2 .

Observe that w(x1) = b1, w(y1) = c1, w(z1) = n
2 , w(t2) = −a1 +

n
2 = n

4 = a1, w(h2) = 0.
We proceed with the remaining vertices of these components as in the case when both color classes
are even.

For all the remaining components we proceed the same as in Case 1.

For t 6= n there is t > n. If t = n + 1, then m = 2p1 + p3 + p4 − 1 and l = (n − 2− 3m)/2
and Am+1 = Bl ∪ {0}. For t = n + 2, then m = 2p1 + p3 + p4 and l = (n− 2− 3m)/2. If t = n + 3,
then m = 2p1 + p3 + p4 − 1 and l = (n− 2− 3m)/2 and Am+1 = Bl ∪ {0}. For t ≥ n + 4 let m =

2p1 + p3 + p4 and l = (n− 2− 3m)/2 for n even and m = 2p1 + p3 + p4 + 1 and l = (n− 2− 3m)/2
otherwise. We proceed in the same way as above (but not using the element n

2 ).

By Theorem 2 and Lemma 2 we obtain immediately the following.

Theorem 3. Let G be a graph of order n with no K1,u components for any integer u ≥ 0. Then k(G) = n if
n 6≡ 2 (mod 4) and k(G) = n + 1 otherwise.
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