Phenomenological Effects of CPT and Lorentz Invariance Violation in Particle and Astroparticle Physics
Abstract
1. Introduction
2. CPT Theorem
2.1. Wightman Axioms
- Poincaré covariance of the Hilbert space where the theory is set.This means that unitary operators exist that implement Lorentz transformations and space-time translations;
- Existence of a vacuum state .There is a unique state, the vacuum, that is unaffected by Poincaré transformations up to a phase: . This implies that this state can only have null four-momentum and angular momentum, since these quantities change under Lorentz transformations. The vacuum state must have even the lowest allowed energy and must be cyclic, which is acting on it via the creation operators every Hilbert space state can be constructed;
- Fields constructed via operators.All physical quantities can be constructed using polynomials of fields acting on the Hilbert space. The fields transform under Poincaré symmetry as scalars, spinors, and tensors. The fields are defined in such a way that each one corresponds to a definite physical state, i.e., a particle with defined physical quantities and quantum numbers, such as mass, spin etc.;
- Energy positivity.The Hamiltonian operator is supposed to have non negative eigenvalues. This property together with covariance under the action of Lorentz group implies that the physical four-momentum belongs to the light cone;
- Microscopic causality.Causality is imposed in the meaning of locality, that is, the field operators can commute/anticommute only if they are defined on points separated by space-like vectors: for all space-time points such that .
2.2. Complex Lorentz Group
2.3. Axiomatic CPT Theorem Demonstration
2.4. Lagrangian Field Theory CPT Theorem Demonstration
- Scalar:
- Fermionic field with spin :
- Bosonic fields with spin
3. CPT Violation Implies Lorentz Invariance Violation
4. Consequences of CPT Symmetry
5. CPT Violation Motivations
6. CPT Theorem in Curved Spacetime
- Locality and covariance.The indices must transform under the action of a generic transformation as:
- Identity element..
- Compatibility with ∗
- Commutativity-anticommutativity.
- Scaling degree.
- Asymptotic positivity.and if and only if ;
- Spectrum condition.The singularities on the field product must have a positive frequency;
- Associativity.An opportunely defined notion of associativity is required;
- Analytic dependence upon the metric.The OPE coefficients must be regular functionals of the space-time metric.
Construction of a QFT from OPE Coefficients
- Linearity.and must be true that:
- Existence of ∗ operator.
- Relations arising from OPE.If is a smeared quantum field, then is a well defined algebra element for every point y, that is if then as an algebra element;
- Anticommutation Relation.
- Positivity.
- OPE series expansion.
- Spectrum condition.The previously cited spectrum condition can be written in the following form:
7. CPT and Gravity
8. CPT Violation and LIV Research
8.1. Very Special Relativity
8.2. Standard Model Extension
8.3. Theories Preserving Covariance
8.4. CPT Violation and LIV Geometry Framework
9. Search for CPT and LIV Violation in Astroparticle Physics
9.1. Ultra High Energy Cosmic Rays
9.2. Time Delays
9.3. CPT and LIV in Neutrino Physics
Author Contributions
Funding
Conflicts of Interest
References
- Schwinger, J. The Theory of Quantized Fields. I. Phys. Rev. 1951, 82, 914. [Google Scholar] [CrossRef]
- Lüders, G. Proof of the TCP theorem. Ann. Phys. 1957, 2, 1–15. [Google Scholar] [CrossRef]
- Pauli, W. Niels Bohr and the Development of Physics; MacGraw-Hill: New York, NY, USA, 1955; pp. 30–51. [Google Scholar]
- Jost, R. A remark on the C.T.P. theorem. Helv. Phys. Acta 1957, 30, 409–416. [Google Scholar] [CrossRef]
- Bell, J.S. Time reversal in field theory. Proc. R. Soc. Lond. 1955, 231, 479–495. [Google Scholar]
- Schwinger, J. Spin, statistic, and the TCP theorem. Proc. Natl. Acad. Sci. USA 1958, 44, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, O. CPT violation implies violation of Lorentz invariance. Phys. Rev. Lett. 2002, 89, 231602. [Google Scholar] [CrossRef] [PubMed]
- Streater, R.; Wightman, A. PCT, Spin and Statistics, and All That; Princeton University Press: Princeton, NJ, USA, 2000. [Google Scholar]
- Bogolyubov, N.; Logunov, A.; Todorov, I. Introduction to Axiomatic Quantum Field Theory; Kluwer Academic Publishers: Boston, MA, USA, 1990. [Google Scholar]
- Haag, R. Local Quantum Physics: Fields, Particles, Algebras; Springer: Berlin, Germany, 1992. [Google Scholar]
- Lehnert, R. CPT Symmetry and Its Violation. Symmetry 2016, 8, 114. [Google Scholar] [CrossRef]
- Greenberg, O. Why is CPT fundamental? Found. Phys. 2006, 36, 1535–1553. [Google Scholar] [CrossRef]
- Hall, D.W.; Wightman, A.S. A theorem on invariant analytic functions with applications to relativistic quantum field theory. Mater. Fys. Medd. Danske Vid. Selsk. 1957, 31, 5. [Google Scholar]
- Greaves, H.; Thomas, T. On the CPT theorem. Stud. Hist. Philos. Sci. B 2014, 45, 46–65. [Google Scholar] [CrossRef][Green Version]
- Chaichian, M.; Dolgov, A.D.; Novikov, V.A.; Tureanu, A. CPT Violation Does Not Lead to Violation of Lorentz Invariance and Vice Versa. Phys. Lett. B 2011, 699, 177–180. [Google Scholar] [CrossRef]
- Tureanu, A. CPT and Lorentz Invariance: Their Relation and Violation. J. Phys. Conf. Ser. 2013, 474, 2031. [Google Scholar] [CrossRef]
- Chaichian, M.; Fujikawa, K.; Tureanu, A. Electromagnetic interaction in theory with Lorentz invariant CPT violation. Phys. Lett. B 2013, 718, 1500–1504. [Google Scholar] [CrossRef]
- Duetsch, M.; Gracia-Bondia, J.M. On the assertion that PCT violation implies Lorentz non-invariance. Phys. Lett. B 2012, 711, 428–433. [Google Scholar] [CrossRef]
- Greenberg, O. Remarks on a Challenge to the Relation between CPT and Lorentz Violation. arXiv 2011, arXiv:1105.0927. [Google Scholar]
- Hawking, S. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Hawking, S. The Unpredictability of Quantum Gravity. Commun. Math. Phys. 1982, 87, 395–415. [Google Scholar] [CrossRef]
- Wheeler, J.; Ford, K. Geons, black holes, and quantum foam: A life in physics. Am. J. Phys. 2000, 68, 584. [Google Scholar] [CrossRef]
- Mavromatos, N.E. CPT violation: Theory and phenomenology. arXiv 2005, arXiv:hep-ph/0504143. [Google Scholar]
- Kostelecky, V.; Samuel, S. Spontaneous Breaking of Lorentz Symmetry in String Theory. Phys. Rev. D 1989, 39, 683. [Google Scholar] [CrossRef] [PubMed]
- Kostelecky, V.; Potting, R. CPT and strings. Nucl. Phys. B 1991, 359, 545–570. [Google Scholar] [CrossRef]
- Kostelecky, V.; Potting, R. CPT, strings, and meson factories. Phys. Rev. D 1995, 51, 3923–3935. [Google Scholar] [CrossRef]
- Hollands, S.; Wald, R.M. Quantum field theory in curved spacetime, the operator product expansion, and dark energy. Gen. Relat. Gavit. 2008, 40, 2051–2059. [Google Scholar] [CrossRef]
- Hollands, S.; Wald, R.M. Axiomatic quantum field theory in curved spacetime. Commun. Math. Phys. 2010, 293, 85–125. [Google Scholar] [CrossRef]
- Morrison, P. Approximate Nature of Physical Symmetries. Am. J. Phys. 1958, 26, 358–368. [Google Scholar] [CrossRef]
- Schiff, L.I. Sign of the Gravitational Mass of a Positron. Phys. Rev. Lett. 1958, 1, 254–255. [Google Scholar] [CrossRef]
- Myron, M.L.G. K20 and the Equivalence Principle. Phys. Rev. 1961, 121, 311–313. [Google Scholar] [CrossRef]
- Nieto, M.; Goldman, J. The Arguments against ’antigravity’ and the gravitational acceleration of antimatter. Phys. Rept. 1991, 205, 221–281. [Google Scholar] [CrossRef]
- Chardin, G.; Rax, J. CP violation: A Matter of (anti)-gravity? Phys. Lett. B 1992, 282, 256–262. [Google Scholar] [CrossRef]
- Chardin, G. CP violation and antigravity (revisited). Nucl. Phys. A 1993, 558, 477C–496C. [Google Scholar] [CrossRef]
- Hajdukovic, D.S. Do we live in the universe successively dominated by matter and antimatter? Astrophys. Space Sci. 2011, 334, 219–223. [Google Scholar] [CrossRef][Green Version]
- Hajdukovic, D.S. What would be outcome of a Big Crunch? Int. J. Theor. Phys. 2010, 49, 1023–1028. [Google Scholar] [CrossRef]
- Noyes, H.P. On ‘Dark Energy from Antimatter’ by Walter R. Lamb; SLAC-PUB-12849; Stanford Linear Accelerator Center (SLAC): Menlo Park, CA, USA, 2007. [Google Scholar]
- Benoit-Levy, A.; Chardin, G. Observational constraints of a Milne Universe. arXiv 2008, arXiv:0811.2149. [Google Scholar]
- Villata, M. CPT symmetry and antimatter gravity in general relativity. EPL 2011, 94, 20001. [Google Scholar] [CrossRef]
- Coleman, S.R.; Glashow, S.L. High-energy tests of Lorentz invariance. Phys. Rev. D 1999, 59, 116008. [Google Scholar] [CrossRef]
- Cohen, A.G.; Glashow, S.L. Very special relativity. Phys. Rev. Lett. 2006, 97, 021601. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, G.W.; Gomis, J.; Pope, C.N. General very special relativity is Finsler geometry. Phys. Rev. D 2007, 76, 081701. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecky, V. Lorentz violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Russell, N. Data Tables for Lorentz and CPT Violation. Rev. Mod. Phys. 2011, 83, 11. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Doubly special relativity. Nature 2002, 418, 34–35. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Doubly special relativity: First results and key open problems. Int. J. Mod. Phys. D 2002, 11, 1643. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L. The principle of relative locality. Phys. Rev. D 2011, 84, 084010. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Bianco, S.; Rosati, G. Planck-Scale-Deformed Relativistic Symmetries and Diffeomorphisms on Momentum Space. Phys. Rev. D 2020, 101, 026018. [Google Scholar] [CrossRef]
- Torri, M.D.C.; Antonelli, V.; Miramonti, L. Homogeneously Modified Special relativity (HMSR). Eur. Phys. J. C 2019, 79, 808. [Google Scholar] [CrossRef]
- Antonelli, V.; Miramonti, L.; Torri, M.D.C. Neutrino oscillations and Lorentz invariance violation in a Finslerian geometrical model. Eur. Phys. J. C 2018, 78, 667. [Google Scholar] [CrossRef]
- Torri, M.D.C. Lorentz Invariance Violation Effects on Ultra High Energy Cosmic Rays Propagation, a Geometrical Approach. Ph.D. Thesis, Milan University (UNIMI), Milan, Italy, 2019. [Google Scholar]
- Kostelecky, V.A. Comments on Lorentz and CPT Violation. In Proceedings of the 6th Meeting on CPT and Lorentz Symmetry, Bloomington, IN, USA, 17–21 June 2014; pp. 33–36. [Google Scholar] [CrossRef]
- Lämmerzahl, C.; Perlick, V. Finsler geometry as a model for relativistic gravity. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850166. [Google Scholar] [CrossRef]
- Hohmann, M.; Pfeifer, C.; Voicu, N. Finsler gravity action from variational completion. Phys. Rev. D 2019, 100, 064035. [Google Scholar] [CrossRef]
- Bubuianu, L.; Vacaru, S.I. Black holes with MDRs and BekenteinHawking and Perelman entropies for FinslerLagrangeHamilton Spaces. Ann. Phys. 2019, 404, 10–38. [Google Scholar] [CrossRef]
- Schreck, M. Classical Lagrangians and Finsler structures for the nonminimal fermion sector of the Standard-Model Extension. Phys. Rev. D 2016, 93, 105017. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Barcaroli, L.; Gubitosi, G.; Liberati, S.; Loret, N. Realization of doubly special relativistic symmetries in Finsler geometries. Phys. Rev. D 2014, 90, 125030. [Google Scholar] [CrossRef]
- Pfeifer, C. Finsler spacetime geometry in Physics. Int. J. Geom. Meth. Mod. Phys. 2019, 16, 1941004. [Google Scholar] [CrossRef]
- Fuster, A.; Pabst, C.; Pfeifer, C. Berwald spacetimes and very special relativity. Phys. Rev. D 2018, 98, 084062. [Google Scholar] [CrossRef]
- Barcaroli, L.; Brunkhorst, L.K.; Gubitosi, G.; Loret, N.; Pfeifer, C. Hamilton geometry: Phase space geometry from modified dispersion relations. Phys. Rev. D 2015, 92, 084053. [Google Scholar] [CrossRef]
- Zatsepin, G.; Kuzmin, V. Upper limit of the spectrum of cosmic rays. JETP Lett. 1966, 4, 78–80. [Google Scholar]
- Greisen, K. End to the cosmic ray spectrum? Phys. Rev. Lett. 1966, 16, 748–750. [Google Scholar] [CrossRef]
- Resconi, E.; Coenders, S.; Padovani, P.; Giommi, P.; Caccianiga, L. Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos. Mon. Not. R. Astron. Soc. 2017, 468, 597–606. [Google Scholar] [CrossRef]
- Scully, S.; Stecker, F. Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic Rays. Astropart. Phys. 2009, 31, 220–225. [Google Scholar] [CrossRef]
- Stecker, F.W.; Scully, S.T. Searching for New Physics with Ultrahigh Energy Cosmic Rays. New J. Phys. 2009, 11, 085003. [Google Scholar] [CrossRef]
- Torri, M.D.C.; Bertini, S.; Giammarchi, M.; Miramonti, L. Lorentz Invariance Violation effects on UHECR propagation: A geometrized approach. J. High Energy Astrophys. 2018, 18, 5–14. [Google Scholar] [CrossRef]
- Saveliev, A.; Maccione, L.; Sigl, G. Lorentz Invariance Violation and Chemical Composition of Ultra High Energy Cosmic Rays. J. Cosmol. Astropart. Phys. 2011, 3, 046. [Google Scholar] [CrossRef]
- Shapiro, I. Four tests of General Relativity. Phys. Rev. Lett. 1964, 13, 789–791. [Google Scholar] [CrossRef]
- Albert, J.; Aliu, E.; Anderhub, H.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J.A.; Bartko, H.; Bastieri, D.; et al. Probing Quantum Gravity using Photons from a flare of the active galactic nucleus Markarian 501 Observed by the MAGIC telescope. Phys. Lett. B 2008, 668, 253–257. [Google Scholar] [CrossRef]
- Ellis, J.; Konoplich, R.; Mavromatos, N.E.; Nguyen, L.; Sakharov, A.S.; Sarkisyan-Grinbaum, E.K. Robust Constraint on Lorentz Violation Using Fermi-LAT Gamma-Ray Burst Data. Phys. Rev. D 2019, 99, 083009. [Google Scholar] [CrossRef]
- Abdalla, H. The 2014 TeV γ-Ray Flare of Mrk 501 Seen with H.E.S.S.: Temporal and Spectral Constraints on Lorentz Invariance Violation. Astrophys. J. 2019, 870, 93. [Google Scholar] [CrossRef]
- Xu, H.; Ma, B.Q. Regularity of high energy photon events from gamma ray bursts. J. Cosmol. Astropart. Phys. 2018, 1, 050. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Ellis, J.R.; Mavromatos, N.E.; Nanopoulos, D.V.; Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 1998, 393, 763–765. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Loret, N.; Rosati, G. Speed of particles and a relativity of locality in κ-Minkowski quantum spacetime. Phys. Lett. B 2011, 700, 150–156. [Google Scholar] [CrossRef]
- Loret, N. Exploring special relative locality with de Sitter momentum-space. Phys. Rev. D 2014, 90, 124013. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Pereira, J.G. De Sitter relativity: A New road to quantum gravity. Found. Phys. 2009, 39, 1–19. [Google Scholar] [CrossRef]
- Bolmont, J.; Perennes, C. Probing modified dispersion relations in vacuum with high-energy γ-ray sources: Review and prospects. J. Phys. Conf. Ser. 2020, 1586, 012033. [Google Scholar] [CrossRef]
- Torri, M.D.C. Neutrino Oscillations and Lorentz Invariance Violation. Universe 2020, 6, 37. [Google Scholar] [CrossRef]
- Cohen, A.G.; Glashow, S.L. A Lorentz-Violating Origin of Neutrino Mass? arXiv 2006, arXiv:hep-ph/0605036. [Google Scholar]
- Stecker, F.W.; Scully, S.T.; Liberati, S.; Mattingly, D. Searching for Traces of Planck-Scale Physics with High Energy Neutrinos. Phys. Rev. D 2015, 91, 045009. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Mewes, M.M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 015020. [Google Scholar] [CrossRef]
- Aartsen, M.E.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T.C.; et al. Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Phys. Rev. Lett. 2014, 113, 101101. [Google Scholar] [CrossRef]
- Liberati, S. Tests of Lorentz invariance: A 2013 update. Class. Quantum Grav. 2013, 30, 133001. [Google Scholar] [CrossRef]
- Stecker, F.W.; Scully, S.T. Propagation of Superluminal PeV IceCube Neutrinos: A High Energy Spectral Cutoff or New Constraints on Lorentz Invariance Violation. Phys. Rev. D 2014, 90, 043012. [Google Scholar] [CrossRef]
- Kostelecky, A.; Mewes, M. Fermions with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2013, 88, 096006. [Google Scholar] [CrossRef]
- Diaz, J.S.; Kostelecky, A.; Mewes, M. Testing Relativity with High-Energy Astrophysical Neutrinos. Phys. Rev. D 2014, 89, 043005. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Liberati, S.; Mattingly, D.; Stecker, F.W. New limits on Planck scale Lorentz violation in QED. Phys. Rev. Lett. 2004, 93, 021101. [Google Scholar] [CrossRef]
- Montemayor, R.; Urrutia, L.F. Synchrotron radiation in Lorentz-violating electrodynamics: The Myers-Pospelov model. Phys. Rev. D 2005, 72, 045018. [Google Scholar] [CrossRef]
- Altschul, B. Synchrotron and inverse compton constraints on Lorentz violations for electrons. Phys. Rev. D 2006, 74, 083003. [Google Scholar] [CrossRef]
- Maccione, L.; Liberati, S.; Celotti, A.; Kirk, J.G. New constraints on Planck-scale Lorentz violation in QED from the Crab Nebula. J. Cosmol. Astropart. Phys. 2007, 10, 013. [Google Scholar] [CrossRef][Green Version]
- Stecker, F.W. Limiting superluminal electron and neutrino velocities using the 2010 Crab Nebula flare and the IceCube PeV neutrino events. Astropart. Phys. 2014, 56, 16. [Google Scholar] [CrossRef]
- Katori, T. Test of Lorentz Violation with Astrophysical Neutrino Flavor at IceCube. In Proceedings of the 8th Meeting on CPT and Lorentz Symmetry (CPT’19), Bloomington, IN, USA, 12–16 May 2019. [Google Scholar] [CrossRef]
- Ellis, J.; Janka, H.T.; Mavromatos, N.E.; Sakharov, A.S.; Sarkisyan, E.K.G. Probing Lorentz Violation in Neutrino Propagation from a Core-Collapse Supernova. Phys. Rev. D 2012, 85, 045032. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mirizzi, A.; Sigl, G. Testing Lorentz invariance with neutrino bursts from supernova neutronization. Phys. Rev. D 2013, 87, 017302. [Google Scholar] [CrossRef]
- Datta, A.; Gandhi, R.; Mehta, P.; Sankar, S.U. Atmospheric neutrinos as a probe of CPT and Lorentz violation. Phys. Lett. B 2004, 597, 356. [Google Scholar] [CrossRef][Green Version]
- Chatterjee, A.; Gandhi, R.; Singh, J. Probing Lorentz and CPT Violation in a Magnetized Iron Detector using Atmospheric Neutrinos. J. High Energy Phys. 2014, 06, 045. [Google Scholar] [CrossRef][Green Version]
- Ellis, J.; Mavromatos, N.E.; Sakharov, A.S.; Sarkisyan-Grinbaum, E.K. Limits on Neutrino Lorentz Violation from Multimessenger Observations of TXS 0506+056. Phys. Lett. B 2019, 789, 352. [Google Scholar] [CrossRef]
- Wei, J.J.; Zhang, B.B.; Shao, L.; Gao, H.; Li, Y. Multimessenger tests of Einstein’s weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar. J. High Energy Astrophys. 2019, 22, 1. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Mewes, M. Lorentz violation and short-baseline neutrino experiments. Phys. Rev. D 2004, 70, 076002. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.A. Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses. Phys. Lett. B 2013, 718, 1303. [Google Scholar] [CrossRef]
- Abe, K. Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline. Phys. Rev. D 2017, 95, 111101. [Google Scholar] [CrossRef]
- Diaz, J.S. Long-baseline neutrino experiments as tests for Lorentz violation. In Proceedings of the Meeting of the Division of the American Physical Society, DPF 2009, Detroit, MI, USA, 26–31 July 2009. [Google Scholar]
- Yu-Feng, L.; Zhen-Hua, Z. Tests of Lorentz and CPT Violation in the Medium Baseline Reactor Antineutrino Experiment. Phys. Rev. D 2014, 90, 113014. [Google Scholar] [CrossRef]
- Abe, K.; T2K Collaboration. The T2K Experiment. Nucl. Instrum. Meth. A 2011, 659, 106. [Google Scholar] [CrossRef]
- Quilain, B. Results of Lorentz- and CPT-Invariance Violation at T2K and Future Perspectives. In Proceedings of the 7th Meeting on CPT and Lorentz Symmetry, Bloomington, IN, USA, 20–24 June 2016; pp. 125–128. [Google Scholar] [CrossRef]
- Adamson, P. Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam. Phys. Rev. Lett. 2008, 101, 13180. [Google Scholar] [CrossRef]
- Adamson, P. A Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector. Phys. Rev. Lett. 2010, 105, 151601. [Google Scholar] [CrossRef]
- Barenboim, G.; Lykken, J.D. MINOS and CPT-violating neutrinos. Phys. Rev. D 2009, 80, 113008. [Google Scholar] [CrossRef]
- Acciarri, R. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 2: The Physics Program for DUNE at LBNF. arXiv 2015, arXiv:1512.06148. [Google Scholar]
- Célio, C.A.M. Physics Beyond the Standard Model with DUNE: Prospects for Exploring Lorentz and CPT Violation. In Proceedings of the 8th Meeting on CPT and Lorentz Symmetry, Bloomington, IN, USA, 12–16 May 2019; pp. 150–153. [Google Scholar]
- Acero, M.A. First Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOvA. Phys. Rev. Lett. 2019, 123, 151803. [Google Scholar] [CrossRef]
- Abe, K. Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations. Nature 2020, 580, 339. [Google Scholar]
- Mezzetto, M.; Terranova, F. Three-flavour oscillations with accelerator neutrino beams belongs to the Topical Collection on “Neutrino Oscillations” of the journal Universe. Universe 2020, 6, 32. [Google Scholar] [CrossRef]
- Majhi, R.; Chembra, S.; Mohanta, R. Exploring the effect of Lorentz invariance violation with the currently running long-baseline experiments. Eur. Phys. J. C 2020, 80, 364. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecky, V. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef]
- Diaz, J.S.; Kostelecky, A.; Mewes, M. Perturbative Lorentz and CPT violation for neutrino and antineutrino oscillations. Phys. Rev. D 2009, 80, 076007. [Google Scholar] [CrossRef]
- Kostelecky, A.; Mewes, M. Lorentz and CPT violation in neutrinos. Phys. Rev. D 2004, 69, 016005. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2012, 85, 096005. [Google Scholar] [CrossRef]
- Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; et al. Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. D 2015, 91, 052003. [Google Scholar] [CrossRef]
- Agarwalla, S.K.; Masud, M. Can Lorentz Invariance Violation affect the Sensitivity of Deep Underground Neutrino Experiment? arXiv 2019, arXiv:1912.13306. [Google Scholar] [CrossRef]
- Antonelli, V.; Miramonti, L.; Torri, M.D.C. Geometrical models with Lorentz invariance violation and neutrino oscillations. Il Nuovo Cimento C 2020, 43, 65. [Google Scholar] [CrossRef]
- Miramonti, L.; Antonelli, V.; Torri, M.D.C. Homogeneously Modified Special Relativity applications for UHECR and Neutrino oscillations. In Proceedings of the Tenth Edition of the International Conference on High Energy and Astroparticle Physics (TIC-HEAP), Constantine, Algeria, 19–21 October 2019. [Google Scholar]
- Ageron, M. ANTARES: The first undersea neutrino telescope. Nucl. Instrum. Meth. A 2011, 656, 11. [Google Scholar] [CrossRef]
- Capozzi, F.; Lisi, E.; Marrone, A. Probing the neutrino mass ordering with KM3NeT-ORCA: Analysis and perspectives. J. Phys. G 2018, 45, 024003. [Google Scholar] [CrossRef]
- Aartsen, M.G. Astrophysical neutrinos and cosmic rays observed by IceCube. Adv. Space Res. 2018, 62, 2902. [Google Scholar] [CrossRef]
- Schröder, F.G. High-Energy Galactic Cosmic Rays (Astro2020 Science White Paper). Bull. Am. Astron. Soc. 2019, 51, 131. [Google Scholar]
- Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E.; Albuquerque, I.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al. Search for Point-like Sources of Ultra-high Energy Neutrinos at the Pierre Auger Observatory and Improved Limit on the Diffuse Flux of Tau Neutrinos. Astrophys. J. Lett. 2012, 775, L4. [Google Scholar] [CrossRef]
- An, F. Neutrino Physics with JUNO. J. Phys. G 2016, 43, 030401. [Google Scholar] [CrossRef]
- Antonelli, V.; Miramonti, L.; Ranucci, G. Present and Future Contributions of Reactor Experiments to Mass Ordering and Neutrino Oscillation Studies. Universe 2020, 6, 52. [Google Scholar] [CrossRef]
- Carmona, J.M.; Corts, J.L.; Relancio, J.; Javier, J.; Reyes, M.K. Lorentz Violation Footprints in the Spectrum of High-Energy Cosmic Neutrinos—Deformation of the Spectrum of Superluminal Neutrinos from Electron-Positron Pair Production in Vacuum. Symmetry 2019, 11, 1419. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonelli, V.; Miramonti, L.; Torri, M.D.C. Phenomenological Effects of CPT and Lorentz Invariance Violation in Particle and Astroparticle Physics. Symmetry 2020, 12, 1821. https://doi.org/10.3390/sym12111821
Antonelli V, Miramonti L, Torri MDC. Phenomenological Effects of CPT and Lorentz Invariance Violation in Particle and Astroparticle Physics. Symmetry. 2020; 12(11):1821. https://doi.org/10.3390/sym12111821
Chicago/Turabian StyleAntonelli, Vito, Lino Miramonti, and Marco Danilo Claudio Torri. 2020. "Phenomenological Effects of CPT and Lorentz Invariance Violation in Particle and Astroparticle Physics" Symmetry 12, no. 11: 1821. https://doi.org/10.3390/sym12111821
APA StyleAntonelli, V., Miramonti, L., & Torri, M. D. C. (2020). Phenomenological Effects of CPT and Lorentz Invariance Violation in Particle and Astroparticle Physics. Symmetry, 12(11), 1821. https://doi.org/10.3390/sym12111821