# Towards Dynamic Uncertain Causality Graphs for the Intelligent Diagnosis and Treatment of Hepatitis B

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

- B-type variables are the root cause variables;
- X-type variables are the effect or consequence variables;
- D-type variables are the default cause variables;
- G-type variables are virtual logic gate variables;
- $BX$-type variables are used to represent the integrated effect of a group of B-type variables;
- A-type events are virtual events defined in DUCG to represent the random causality between the parent and child nodes.

## 3. Method

#### 3.1. Diagnosis and Treatment of Hepatitis B

#### 3.2. Characteristic Analysis to Hepatitis B Diagnosis and Treatment

#### 3.3. A Hepatitis B Diagnosis and Treatment Model Based on DUCG

#### 3.4. A Introduction to the Sub-DUCG for HBeAg-Positive Chronic Hepatitis B

## 4. Verification Experiments

#### 4.1. Verification Experiment: Case 1

#### 4.2. Verification Experiment: Case 2

## 5. Empirical Evaluations

**Remark**

**1.**

**Remark**

**2.**

**Remark**

**3.**

## 6. Conclusions and Future Work

- Introducing the expression method of the trend brought by the inspection data over time in the system;
- Providing the treatment plan after the diagnosis of the disease;
- Providing a new treatment plan immediately after the patient develops resistance to a certain drug;
- Giving an explanation of the diagnosis and treatment plan.

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

DUCG | Dynamic Uncertain Causality Graph |

HBV | The hepatitis B virus |

HBsAg | The hepatitis B surface |

HBcAg | The hepatitis B core antigen |

anti-HBs | antibodies to the hepatitis B surface antigen |

anti-HBc | antibodies to the hepatitis B core antigen |

anti-HBe | antibodies to the e antigen |

ALT | alanine aminotransferase |

AST | aspartate transaminase |

IFN | Interferon alpha-2a |

PEG | PEGylated interferon alpha-2a |

LAM | Lamivudine |

ADV | Adefovir Dipivoxil |

ETV | Entecavir |

LdT | Telbivudine |

TDF | Tenofovir Disoprox |

## Appendix A. Dynamic Uncertain Causality Graph

- able to focuses on the compact representation of complex uncertain causalities;
- able to perform exact reasoning in the case of the incomplete knowledge representation;
- able to simplify the graphical knowledge base conditional on observations before numerical calculations, so that the scale and complexity of problem can be reduced exponentially; and
- much less reliant on the parameter accuracy.

## References

- Obeidat, I.; Alkhasawneh, A.; Mohammad. Computer Based Clinical Decision Support System for Hepatitis Disease Diagnosis. Int. J. Adv. Comput. Technol.
**2013**, 5, 14–15. [Google Scholar] - Berlin, A.; Sorani, M.; Sim, I. A taxonomic description of computer-based clinical decision support systems. J. Biomed. Inform.
**2006**, 39, 656–667. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Yardimci, A. Soft computing in medicine. Appl. Soft Comput.
**2009**, 9, 1029–1043. [Google Scholar] [CrossRef] - Keith, R.D.F.; Beckley, S.; Garibaldi, J.M.; Westgate, J.A.; Ifeachor, E.C.; Greene, K.R. A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. BJOG Int. J. Obstet. Gynaecol.
**1995**, 102, 688–700. [Google Scholar] [CrossRef] - Valstar, E.R.; Botha, C.P.; Glas, M.V.D.; Rozing, P.M.; Helm, F.C.T.V.D.; Post, F.H.; Vossepoel, A.M. Towards computer-assisted surgery in shoulder joint replacement. ISPRS J. Photogramm. Remote Sens.
**2002**, 56, 326–337. [Google Scholar] [CrossRef] - Malek, S.; Phillips, R.; Mohsen, A.; Viant, W.; Bielby, M.; Sherman, K. Validations of Computer-Assisted Orthopaedic Surgical System for insertion of distal locking screws for intramedullary nails. Int. Congr. Ser.
**2004**, 1268, 614–619. [Google Scholar] [CrossRef] - Avci, E. A New Expert System for Diagnosis of Lung Cancer: GDA—LS_SVM. J. Med. Syst.
**2012**, 36, 2005–2009. [Google Scholar] [CrossRef] - Schatz, C.V.D.; Schneider, F.K. Intelligent and Expert Systems in Medicine–A Review. In Proceedings of the XVIII Congreso Argentino de Bioingenieria, Mar del Plata, Argentina, 28–30 September 2011; pp. 1–10. [Google Scholar]
- Miller, R.A.; Pople, H.E.; Myers, J.D. INTERNIST-I, An Experimental Computer-Based Diagnostic Consultant for General Internal Medicine. In Computer-Assisted Medical Decision Making; Springer: New York, NY, USA, 1985; pp. 139–158. [Google Scholar]
- Montani, S.; Bellazzi, R.; Portinale, L.; Stefanelli, M. A multi-modal reasoning methodology for managing IDDM patients. Int. J. Med. Inform.
**2000**, 58–59, 243–256. [Google Scholar] [CrossRef] - Dragulescu, D.; Albu, A. Expert System for Medical Predictions. In Proceedings of the International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 17–18 May 2007; pp. 123–128. [Google Scholar]
- Hsu, C.C.; Ho, C.S. A new hybrid case-based architecture for medical diagnosis. Inf. Sci.
**2004**, 166, 231–247. [Google Scholar] [CrossRef] - Sun, W.; Chen, J.; Li, J. Decision tree and PCA-based fault diagnosis of rotating machinery. Mech. Syst. Signal Process.
**2007**, 21, 1300–1317. [Google Scholar] [CrossRef] - Papageorgiou, E.I.; Huszka, C.; Roo, J.D.; Douali, N.; Jaulent, M.C.; Colaert, D. Application of probabilistic and fuzzy cognitive approaches in semantic web framework for medical decision support. Comput. Methods Progr. Biomed.
**2013**, 112, 580–598. [Google Scholar] [CrossRef] [PubMed] - Ruffle, J.K.; Farmer, A.D.; Aziz, Q. Artificial Intelligence-Assisted Gastroenterology—Promises and Pitfalls. Am. J. Gastroenterol.
**2019**, 114, 422–428. [Google Scholar] [CrossRef] [PubMed] - Erickson, B.J.; Korfiatis, P.; Kline, T.L.; Akkus, Z.; Philbrick, K.; Weston, A.D. Deep Learning in Radiology: Does One Size Fit All? J. Am. Coll. Radiol.
**2018**, 15, 521–526. [Google Scholar] [CrossRef] [Green Version] - Yuille, A.L.; Liu, C. Deep Nets: What have they ever done for Vision? arXiv
**2018**, arXiv:1805.04025. [Google Scholar] - Marcus, G. Deep Learning: A Critical Appraisal. arXiv
**2018**, arXiv:1801.00631. [Google Scholar] - Shao-rui, H.; Shi-chao, G.; Lin-xiao, F.; Jia-jia, C.; Qin, Z.; Lan-juan, L. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model. J. Zhejiang Univ. Sci. B (Biomed. Biotechnol.)
**2016**, 18, 393–401. [Google Scholar] - Zhang, Q.; Bu, X.; Zhang, M.; Zhang, Z.; Hu, J. Dynamic uncertain causality graph for computer-aided general clinical diagnoses with nasal obstruction as an illustration. Artif. Intell. Rev.
**2020**. [Google Scholar] [CrossRef] - Itani, S.; Lecron, F.; Fortemps, P. Specifics of Medical Data Mining for Diagnosis Aid: A Survey. Expert Syst. Appl.
**2018**, 118. [Google Scholar] [CrossRef] - Zhou, Z.H.; Jiang, Y. Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble. IEEE Trans. Inf. Technol. Biomed.
**2003**, 7, 37–42. [Google Scholar] [CrossRef] - Zhang, Q.; Zhang, Z. Dynamic Uncertain Causality Graph Applied to Dynamic Fault Diagnoses and Predictions with Negative Feedbacks. IEEE Trans. Reliab.
**2016**, 65, 1030–1044. [Google Scholar] [CrossRef] - Zhang, Q.; Geng, S. Dynamic Uncertain Causality Graph Applied to Dynamic Fault Diagnoses of Large and Complex Systems. IEEE Trans. Reliab.
**2015**, 64, 910–927. [Google Scholar] [CrossRef] - Zhang, Q. A continuous possibility propagation diagram approach for reasoning under uncertainty. IEEE Int. Conf. Syst.
**1996**, 2, 1426–1429. [Google Scholar] - Zhao, Y.; Zhang, Q.; Deng, H.C.; Dong, C.L. Application of DUCG in Fault Diagnosis of Nuclear Power Plant Secondary Loop. Yuanzineng Kexue Jishu/At. Energy Sci. Technol.
**2014**, 48, 496–501. [Google Scholar] - Dong, C.; Wang, Y.; Zhang, Q.; Wang, N. The methodology of Dynamic Uncertain Causality Graph for intelligent diagnosis of vertigo. Comput. Methods Progr. Biomed.
**2013**, 113, 162–174. [Google Scholar] [CrossRef] [PubMed] - Hollinger, F.B.; Lau, D.T. Hepatitis B: The pathway to recovery through treatment. Gastroenterol. Clin. N. Am.
**2006**, 35, 425–461. [Google Scholar] [CrossRef] [PubMed] - Lai, C.L.; Yuen, M.F. The natural history and treatment of chronic hepatitis B: A critical evaluation of standard treatment criteria and end points. Ann. Intern. Med.
**2007**, 147, 58–61. [Google Scholar] [CrossRef] - Terrault, N.A.; Bzowej, N.H.; Chang, K.M.; Hwang, J.P.; Jonas, M.M.; Murad, M.H. AASLD guidelines for treatment of chronic hepatitis B. Hepatology
**2016**, 63, 261. [Google Scholar] [CrossRef] - Zoulim, F. New nucleic acid diagnostic tests in viral hepatitis. Semin. Liver Dis.
**2006**, 26, 309. [Google Scholar] [CrossRef] - Afif, M.H.; Hedar, A.R.; Abdel Hamid, T.H.; Mahdy, Y.B. SS-SVM (3SVM): A New Classification Method for Hepatitis Disease Diagnosis. (IJACSA) Int. J. Adv. Comput. Sci. Appl.
**2013**, 4, 53. [Google Scholar] - Bascil, M.S.; Oztekin, H. A study on hepatitis disease diagnosis using probabilistic neural network. J. Med. Syst.
**2012**, 36, 1603–1606. [Google Scholar] [CrossRef] - Chen, H.L.; Liu, D.Y.; Yang, B.; Liu, J.; Wang, G. A new hybrid method based on local fisher discriminant analysis and support vector machines for hepatitis disease diagnosis. Expert Syst. Appl. Int. J.
**2011**, 38, 11796–11803. [Google Scholar] [CrossRef] - Sartakhti, J.S.; Zangooei, M.H.; Mozafari, K. Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA). Comput. Methods Progr. Biomed.
**2012**, 108, 570–579. [Google Scholar] [CrossRef] - Zhang, Q. Dynamic Uncertain Causality Graph for Knowledge Representation and Reasoning: Discrete DAG Cases. J. Comput. Sci. Technol.
**2012**, 27, 1–23. [Google Scholar] [CrossRef]

No. | Disease |
---|---|

1 | HBeAg-positive chronic hepatitis B |

2 | HBeAg-negative chronic hepatitis B |

3 | Chronic hepatitis B virus carriers |

4 | Inactivity HBsAg carriers |

5 | Occult chronic hepatitis B |

6 | Compensated hepatitis B cirrhosis |

7 | De-compensated hepatitis B cirrhosis |

No. | Treatment Plan | Medical Abbreviation |
---|---|---|

1 | Interferon alpha-2a | IFN-3MIU |

2 | Interferon alpha-2a | IFN-5MIU |

3 | PEGylated interferon alpha-2a | PEG-135 |

4 | PEGylated interferon alpha-2a | PEG-180 |

5 | Lamivudine | LAM |

6 | Adefovir Dipivoxil | ADV |

7 | Entecavir | ETV |

8 | Telbivudine | LdT |

9 | Tenofovir Disoprox | TDF |

State | State Description |
---|---|

0 | No |

2 | Have |

State | State Description |
---|---|

0 | Normal (0∼40) |

2 | Less than $2\times ULN$ (<80) |

4 | Greater than or equal to $2\times ULN$ and less than or equal to $10\times ULN$ (80∼400) |

6 | Greater than $10\times ULN$ (>400) |

Name | Description |
---|---|

${X}_{66}$ | The symptoms and medical signs of HBeAg-positive chronic hepatitis B |

${X}_{45},{X}_{47},{X}_{49}$ | Tired; Anorexia; Bloating |

${X}_{50\text{\u2013}53}$ | Jaundice; Dull looking; Palmar erythema; Spider nevi |

${X}_{12}$ | The e antigens in serum |

${X}_{18}$ | Serum alanine aminotransferase levels |

${X}_{16}$ | Serum hepatitis B virus DNA levels |

${X}_{41}$ | Inflammatory conditions of liver tissue |

${X}_{10}$ | The hepatitis B surface antigens in serum |

${X}_{58\text{\u2013}62}$ | Gender; Way of infection; Drinking history; Duration of the disease; Hepatitis viruses |

${X}_{67},{X}_{69}$ | Age; Medication history |

${X}_{1601}$ | ${X}_{16}^{\prime}$ |

${X}_{1801}$ | ${X}_{18}^{\prime}$ |

${X}_{1802}$ | $\int {X}_{18}$ |

Incomplete Medical Information | Complete Medical Information | |||||
---|---|---|---|---|---|---|

Disease | Tested | Correct | Precision | Tested | Correct | Precision |

HBeAg-positive chronic hepatitis B | 10 | 9 | 90% | 10 | 9 | 90% |

HBeAg-negative chronic hepatitis B | 10 | 8 | 80% | 10 | 9 | 90% |

Chronic hepatitis B virus carriers | 10 | 6 | 60% | 10 | 8 | 80% |

Inactivity HBsAg carriers | 4 | 2 | 50% | 4 | 4 | 100% |

Occult chronic hepatitis B | 10 | 8 | 80% | 10 | 9 | 90% |

Compensated hepatitis B cirrhosis | 6 | 4 | 66.60% | 6 | 5 | 83.30% |

Decompensated hepatitis B cirrhosis | 10 | 8 | 80% | 10 | 9 | 90% |

Total | 60 | 45 | 75.00% | 60 | 53 | 88.3% |

Treatment plan | ||||||

IFN-3MIU | 10 | 6 | 60% | 10 | 9 | 90% |

IFN-5MIU | 10 | 7 | 70% | 10 | 9 | 90% |

PEG-135 | 10 | 6 | 60% | 10 | 9 | 90% |

PEG-180 | 10 | 8 | 80% | 10 | 10 | 100% |

LAM | 10 | 9 | 90% | 10 | 10 | 100% |

ADV | 10 | 8 | 80% | 10 | 10 | 100% |

ETV | 10 | 10 | 100% | 10 | 10 | 100% |

LdT | 10 | 7 | 70% | 10 | 9 | 90% |

TDF | 10 | 8 | 80% | 10 | 10 | 100% |

Total | 90 | 69 | 76.60% | 90 | 86 | 95.50% |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Deng, N.; Zhang, Q.
Towards Dynamic Uncertain Causality Graphs for the Intelligent Diagnosis and Treatment of Hepatitis B. *Symmetry* **2020**, *12*, 1690.
https://doi.org/10.3390/sym12101690

**AMA Style**

Deng N, Zhang Q.
Towards Dynamic Uncertain Causality Graphs for the Intelligent Diagnosis and Treatment of Hepatitis B. *Symmetry*. 2020; 12(10):1690.
https://doi.org/10.3390/sym12101690

**Chicago/Turabian Style**

Deng, Nan, and Qin Zhang.
2020. "Towards Dynamic Uncertain Causality Graphs for the Intelligent Diagnosis and Treatment of Hepatitis B" *Symmetry* 12, no. 10: 1690.
https://doi.org/10.3390/sym12101690