# On Dynamic Extension of a Local Material Symmetry Group for Micropolar Media

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Strain Energy Density

## 3. Kinetic Constitutive Equation

## 4. Local Material Symmetry Group

**Definition**

**1.**

**Definition**

**2**

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Cosserat, E.; Cosserat, F. Théorie des corps déformables; Herman et Fils: Paris, France, 1909. [Google Scholar]
- Tejchman, J. Shear Localization in Granular Bodies with Micro-Polar Hypoplasticity; Springer: Berlin, Germany, 2008. [Google Scholar]
- Vardoulakis, I. Cosserat Continuum Mechanics: With Applications to Granular Media; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Rueger, Z.; Lakes, R.S. Experimental Cosserat elasticity in open-cell polymer foam. Philos. Mag.
**2016**, 96, 93–111. [Google Scholar] [CrossRef] - Rueger, Z.; Lakes, R. Experimental study of elastic constants of a dense foam with weak Cosserat coupling. J. Elast.
**2019**, 137, 101–115. [Google Scholar] [CrossRef] - Reccia, E.; De Bellis, M.L.; Trovalusci, P.; Masiani, R. Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Compos. Part B Eng.
**2018**, 136, 39–45. [Google Scholar] [CrossRef] - Hütter, G. On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua. J. Mech. Phys. Solids
**2019**, 127, 62–79. [Google Scholar] [CrossRef] - Besdo, D. Towards a Cosserat-theory describing motion of an originally rectangular structure of blocks. Arch. Appl. Mech.
**2010**, 80, 25–45. [Google Scholar] [CrossRef] - Leonetti, L.; Greco, F.; Trovalusci, P.; Luciano, R.; Masiani, R. A multiscale damage analysis of periodic composites using a couple-stress/Cauchy multidomain model: Application to masonry structures. Compos. Part B Eng.
**2018**, 141, 50–59. [Google Scholar] [CrossRef] [Green Version] - Park, H.C.; Lakes, R.S. Cosserat micromechanics of human bone: Strain redistribution by a hydration-sensitive constituent. J. Biomech.
**1986**, 19, 385–397. [Google Scholar] [CrossRef] - Goda, I.; Assidi, M.; Belouettar, S.; Ganghoffer, J.F. A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater.
**2012**, 16, 87–108. [Google Scholar] [CrossRef] - Suiker, A.S.J.; Metrikine, A.V.; de Borst, R. Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct.
**2001**, 38, 1563–1583. [Google Scholar] [CrossRef] - Abdoul-Anziz, H.; Seppecher, P. Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Complex Syst.
**2018**, 6, 213–250. [Google Scholar] [CrossRef] [Green Version] - Rueger, Z.; Ha, C.S.; Lakes, R.S. Cosserat elastic lattices. Meccanica
**2019**, 54, 1983–1999. [Google Scholar] [CrossRef] - Eremeyev, V.A. Two- and three-dimensional elastic networks with rigid junctions: Modelling within the theory of micropolar shells and solids. Acta Mech.
**2019**, 230, 3875–3887. [Google Scholar] [CrossRef] [Green Version] - Shirani, M.; Steigmann, D.J. A Cosserat model of elastic solids reinforced by a family of curved and twisted fibers. Symmetry
**2020**, 12, 1133. [Google Scholar] [CrossRef] - Eringen, A.C. Continuum theory of dense rigid suspensions. Rheol. Acta
**1991**, 30, 23–32. [Google Scholar] [CrossRef] - Eringen, A.C. A continuum theory of dense suspensions. ZAMP
**2005**, 56, 529–547. [Google Scholar] [CrossRef] - Altenbach, H.; Naumenko, K.; Zhilin, P.A. A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Contin. Mech. Thermodyn.
**2003**, 15, 539–570. [Google Scholar] [CrossRef] - Eringen, A.C.; Kafadar, C.B. Polar field theories. In Continuum Physics; Eringen, A.C., Ed.; Academic Press: New York, 1976; Volume IV, pp. 1–75. [Google Scholar]
- Eringen, A.C. Microcontinuum Field Theory. I. Foundations and Solids; Springer: New York, NY, USA, 1999. [Google Scholar]
- Eringen, A.C. Microcontinuum Field Theory. II. Fluent Media; Springer: New York, NY, USA, 2001. [Google Scholar]
- Eremeyev, V.A.; Lebedev, L.P.; Altenbach, H. Foundations of Micropolar Mechanics; Springer-Briefs in Applied Sciences and Technologies; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Maugin, G.A. Non-Classical Continuum Mechanics: A Dictionary; Springer: Singapore, 2017. [Google Scholar]
- Kafadar, C.B.; Eringen, A.C. Micropolar media–I. The classical theory. Int. J. Eng. Sci.
**1971**, 9, 271–305. [Google Scholar] [CrossRef] - Truesdell, C.; Noll, W. The Non-Linear Field Theories of Mechanics, 3rd ed.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Eremeyev, V.A.; Pietraszkiewicz, W. Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct.
**2012**, 49, 1993–2005. [Google Scholar] [CrossRef] [Green Version] - Eremeyev, V.A.; Pietraszkiewicz, W. Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids
**2016**, 21, 210–221. [Google Scholar] [CrossRef] - Lurie, A.I. Analytical Mechanics; Springer: Berlin, Germany, 2001. [Google Scholar]
- Müller, W.H.; Vilchevskaya, E.N. Micropolar theory with production of rotational inertia: A rational mechanics approach. In Generalized Models and Non-Classical Approaches in Complex Materials 1; Springer: Cham, Switzerland, 2018; pp. 581–606. [Google Scholar]
- Pietraszkiewicz, W.; Eremeyev, V.A. On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct.
**2009**, 46, 774–787. [Google Scholar] [CrossRef] [Green Version] - Pietraszkiewicz, W. Refined resultant thermomechanics of shells. Int. J. Eng. Sci.
**2011**, 49, 1112–1124. [Google Scholar] [CrossRef] - Eremeyev, V.A.; Cloud, M.J.; Lebedev, L.P. Applications of Tensor Analysis in Continuum Mechanics; World Scientific: Hackensack, NJ, USA, 2018. [Google Scholar]
- Bertram, A.; Forest, S. (Eds.) Mechanics of Strain Gradient Materials; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Auffray, N.; Le Quang, H.; He, Q.C. Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids
**2013**, 61, 1202–1223. [Google Scholar] [CrossRef] [Green Version] - Auffray, N.; Dirrenberger, J.; Rosi, G. A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int. J. Solids Struct.
**2015**, 69, 195–206. [Google Scholar] [CrossRef] - Dell’Isola, F.; Sciarra, G.; Vidoli, S. Generalized Hooke’s law for isotropic second gradient materials. R. Soc. Lond. Proc. Ser. A
**2009**, 465, 2177–2196. [Google Scholar] [CrossRef] [Green Version] - Murdoch, A.I. Symmetry considerations for materials of second grade. J. Elast.
**1979**, 9, 43–50. [Google Scholar] [CrossRef] - Elzanowski, M.; Epstein, M. The symmetry group of second-grade materials. Int. J. Non-Linear Mech.
**1992**, 27, 635–638. [Google Scholar] [CrossRef] - Reiher, J.C.; Bertram, A. Finite third-order gradient elasticity and thermoelasticity. J. Elast.
**2018**, 133, 223–252. [Google Scholar] [CrossRef] - Eremeyev, V.A. On the material symmetry group for micromorphic media with applications to granular materials. Mech. Res. Commun.
**2018**, 94, 8–12. [Google Scholar] [CrossRef] - Timoshenko, S.P. On the correnction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser. 6
**1921**, 41, 744–746. [Google Scholar] [CrossRef] [Green Version] - Mindlin, R.D. Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. Trans. Asme. J. Appl. Mech.
**1951**, 18, 31–38. [Google Scholar] - Murdoch, A.I.; Cohen, H. Symmetry considerations for material surfaces. Arch. Ration. Mech. Anal.
**1979**, 72, 61–98. [Google Scholar] [CrossRef] - Eremeyev, V.A.; Pietraszkiewicz, W. Local symmetry group in the general theory of elastic shells. J. Elast.
**2006**, 85, 125–152. [Google Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Eremeyev, V.A.; Konopińska-Zmysłowska, V.
On Dynamic Extension of a Local Material Symmetry Group for Micropolar Media. *Symmetry* **2020**, *12*, 1632.
https://doi.org/10.3390/sym12101632

**AMA Style**

Eremeyev VA, Konopińska-Zmysłowska V.
On Dynamic Extension of a Local Material Symmetry Group for Micropolar Media. *Symmetry*. 2020; 12(10):1632.
https://doi.org/10.3390/sym12101632

**Chicago/Turabian Style**

Eremeyev, Victor A., and Violetta Konopińska-Zmysłowska.
2020. "On Dynamic Extension of a Local Material Symmetry Group for Micropolar Media" *Symmetry* 12, no. 10: 1632.
https://doi.org/10.3390/sym12101632