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Abstract: The purpose of this paper is to construct generating functions for negative order Changhee
numbers and polynomials. Using these generating functions with their functional equation, we prove
computation formulas for combinatorial numbers and polynomials. These formulas include Euler
numbers and polynomials of higher order, Stirling numbers, and negative order Changhee numbers
and polynomials. We also give some properties of these numbers and polynomials with their
generating functions. Moreover, we give relations among Changhee numbers and polynomials
of negative order, combinatorial numbers and polynomials and Bernoulli numbers of the second
kind. Finally, we give a partial derivative of an equation for generating functions for Changhee
numbers and polynomials of negative order. Using these differential equations, we derive recurrence
relations, differential and integral formulas for these numbers and polynomials. We also give p-adic
integrals representations for negative order Changhee polynomials including Changhee numbers
and Deahee numbers.

Keywords: generating function; Bernoulli numbers and polynomials of the second kind; Euler
numbers and polynomials; Stirling numbers; Combinatorial numbers and polynomials; Changhee
numbers and polynomials; p-adic integrals

MSC: 05A15; 05A10; 11B83; 26C05; 11S80

1. Introduction

The finite sums of powers of binomial coefficients with combinatorial numbers and polynomials
have been used in almost all areas of mathematics, probability theory, statistics, physics, computer
science and the other applied sciences. These sums are also used to construct mathematical models.
Recently, generating functions including combinatorial numbers and polynomials, and also the finite
sums of powers of binomial coefficients in terms of the hypergeometric functions, were given by
Simsek [1]. By using these functions, many computation formulas and relations including these sums
and various kinds of special numbers and polynomials have been given (cf. References [1–9]).

In recent years, using different methods and techniques, negative order special numbers and
polynomials, which are negative order Bernoulli polynomials and negative order Euler polynomials,
have been studied by many mathematicians. In this paper, we investigate and study generating
functions for negative order Changhee polynomials and numbers. By using these functions with
combinatorial numbers, we give many new formulas and identities including Bernoulli numbers and
polynomials of the second kind, Euler numbers and polynomials, Stirling numbers and combinatorial
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numbers and polynomials. The goal of this paper is to give computation formulas for negative order
Changhee polynomials and numbers including the finite sums of powers of binomial sums.

In this paper we use the following notations and definitions:
Let N = {1, 2, 3, . . . }, which denotes set of natural numbers. Let N0 = N∪ {0}. Let Z, R, and C

denote respectively sets of integer numbers, real numbers, complex numbers, respectively.

(x)v = x(x− 1) · · · (x− v + 1),

(x)0 = 1 and (
x
v

)
=

(x)v

v!
,

where v ∈ N0 and
(z)v = (−1)v(−z)v = z(z + 1) · · · (z + v− 1)

(cf. References [1,3–10]).
In order to give the results of this paper, we need the following generating functions for special

polynomials and numbers.
The Euler polynomials of order k are defined by

FE(t, x; k) =
(

2
et + 1

)k
etx =

∞

∑
n=0

E(k)
n (x)

tn

n!
. (1)

(cf. References [1,3–10]).
Substituting k = 0 into (1), we have

E(0)
n (x) = xn.

Substituting x = 0 into (1), we have the Euler numbers of order k:

E(k)
n = E(k)

n (0),

and substituting x = 0 and k = 1 into (1), we have the Euler numbers:

En = E(1)
n

(cf. References [1,3–10]).
The Stirling numbers of the first kind are defined by

FS1(t, k) =
(log(1 + t))k

k!
=

∞

∑
n=0

S1(n, k)
tn

n!
. (2)

From the above function, if k > n, then we have

S1(n, k) = 0.. (3)

These numbers can also be written as

(x)n =
n

∑
l=0

S1(n, l)xl (4)

(cf. References [1–43]).
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The λ-Stirling numbers are defined by

FS2(t, k; λ) =
(λet − 1)k

k!
=

∞

∑
n=0

S2(n, k; λ)
tn

n!
, (5)

(cf. References [31,35,43]).
Setting λ = 1 in (5), we have the Stirling numbers of the second kind:

S2(n, k) = S2(n, k; 1).

If k > n, then we have
S2(n, k) = 0 (6)

(cf. References [1–9,11,13–46]).
The Bernoulli polynomials of the second kind are defined by

FB2(t, x) =
t

log(1 + t)
(1 + t)x =

∞

∑
n=0

bn (x)
tn

n!
(7)

and also

bn (x) =
∫ x+1

x
(z)ndz (8)

(cf. see, for detail, References ([33], pp. 113–117)). When x = 0, we have the Bernoulli numbers of the
second kind (cf. References [13,14], ([33], pp. 113–117)).

The Peters polynomials are defined by

FP (t, x; λ, µ) =
(1 + t)x(

1 + (1 + t)λ
)µ =

∞

∑
n=0

sn (x; λ, µ)
tn

n!
, (9)

where x, t ∈ C (cf. References [2,16–23]).
The Peters polynomials are including some well-known families of special polynomials and

numbers such as the Boole polynomials and numbers, the Bernoulli polynomials and numbers, the
Euler polynomials and numbers, the Stirling numbers, the Changhee polynomials and numbers and
other combinatorial polynomials and numbers.

Substituting µ = 1 into (9), we have ξn(x) = sn (x; λ, 1) denotes the Boole polynomials
(cf. References [14,33]).

Let m be any integer. The Changhee polynomials of order m are given by the following
generating function:

F(t, x, m) =
2m(1 + t)x

(2 + t)m =
∞

∑
n=0

Ch(m)
n (x)

tn

n!
. (10)

Let us examine the generating function in the Equation (10) for some special cases of integer m
as follows:

(1) Let m = d and d ∈ N. Then, we have Changhee polynomials of order d (cf. Reference [19]).
Setting x = 0 into Equation (10), we have Changhee numbers of order d, which defined by means of
the following generating function:

2d

(2 + t)d =
∞

∑
n=0

Ch(d)n
tn

n!
, (11)
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which, for d = 1, yields Chn(x) = Ch(1)n (x), which denote Changhee polynomials and Chn = Chn(0),
which denotes Changhee numbers. These numbers are given by

Chn =

(
−1

2

)n
n! (12)

(cf. References [17,19]).
(2) Let m = 0. By using Equation (10), we get the following generating function:

(1 + t)x =
∞

∑
n=0

Ch(0)n (x)
tn

n!
. (13)

(3) Let m = −k and k ∈ N. We modified Equation (10). Thus, we define Changhee polynomials of
order −k, Ch(−k)

n (x), by means of the following generating function:

H(t, x,−k) =
(1 + t)x (2 + t)k

2k =
∞

∑
n=0

Ch(−k)
n (x)

tn

n!
. (14)

Here Ch(−k)
n (x) are called negative order Changhee polynomials.

Setting x = 0 into Equation (14), we get Changhee numbers of order−k. These numbers are given
by the following generating function:

K(t,−k) =
(2 + t)k

2k =
∞

∑
n=0

Ch(−k)
n

tn

n!
. (15)

In next Sections, we investigate some properties of the negative order Changhee polynomials.
These polynomials and numbers have various relations with many well-known families of special
numbers and polynomial. In particular, their relationships to combinatoric numbers are very interesting
and they have very important results. These are discussed in detail in the following sections.

By using Equation (13), we have

Ch(0)n (x) = x(x− 1) · · · (x− n + 1).

Few values of the polynomials Ch(0)n (x) are given as follows:

Ch(0)0 (x) = 1,

Ch(0)1 (x) = x,

Ch(0)2 (x) = x2 − x,

Ch(0)3 (x) = x3 − 3x2 − 2x, . . .

Therefore, with help of Equation (4), we obtain a relation between the polynomials Ch(0)n (x) and
the Stirling numbers of the first kind by the following formula:

Ch(0)n (x) =
n

∑
l=0

S1(n, l)xl . (16)

Combinatorial Numbers

Here, we give some well-known combinatorial numbers and their generating functions.
Some formulas and relations between these numbers and negative order Changhee polynomials
and numbers are given in the following sections.
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The numbers y1(n, k; λ) is defined by

Fy1(t, k; λ) =
1
k!
(λet + 1)k =

∞

∑
n=0

y1(n, k; λ)
tn

n!
. (17)

(cf. Reference [8]).
By Equation (8) in [8], we have

y1(n, k; λ) =
1
k!

n

∑
j=0

(
k
j

)
jnλj, (n ∈ N0).

(cf. Reference [8], Theorem 1).
Also we have

y1(n, k; λ) =
n

∑
j=0

(
k
j

)
j!S2(n, j)λj(λ + 1)k−j.

(cf. Reference [47], Equation (16)).
Substituting λ = 1 into the aforementioned equation, we have

B(n, k) = k!y1(n, k; 1) =
∂m

∂tm (et − 1)k|t=0. (18)

(cf. References [1,8,15]).
The numbers y3(n, k; λ, a, b) is defined by

Fy3(t, k; λ, a, b) =
ebkt

k!

(
λe(a−b)t + 1

)k
=

∞

∑
n=0

y3(n, k; λ, a, b)
tn

n!
. (19)

(cf. Reference [9]).
By Equation (19), we have

y3(n, k; λ, a, b) =
1
k!

k

∑
j=0

(
k
j

)
λj(bk + j(a− b))n.

(cf. Reference [9]).
The numbers y4(n, k; λ, a, b) are defined by

Fy4(t, k; λ, a, b) =
ebtk

(a + b + 1)k (e
(a−b)t + λ)k =

∞

∑
n=0

y4(n, k; λ, a, b)
tn

n!
. (20)

(cf. Reference [39]).
By using (20), we have

y4(n, k; λ, a, b) =
1

(a + b + 1)k

k

∑
j=0

(
k
j

)
λj(bk + j(a− b))n

and

y4(n, k; λ, a, b) =
k!λk

(a + b + 1)k y3(n, k; λ−1, a, b)

(cf. Reference [39]).
Results of this paper are briefly summarized below.
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In Section 2, with help of generating functions and their functional equations, some properties of
Changhee numbers and polynomials of negative order are given. By using these functional equations,
we derive computation formulas for negative order Changhee polynomials.

In Section 3, we give partial derivative equations for the generating function of the negative order
Changhee polynomials. By using these partial differential equations, we derive differential formulas
for the negative order Changhee polynomials.

In Section 4, we give integral representations of negative order Changhee polynomials.
In Section 5, we give some identities and relations including Bernoulli numbers and polynomials

of the second kind, Euler numbers and polynomials, Stirling numbers, negative order Changhee
numbers and polynomials and combinatorial numbers and polynomials such as the special numbers
y1(n, k; λ), y3(n, k; λ, a, b), y4(n, k; λ, a, b), and B(n, k).

2. Changhee Polynomials of Negative Order

In this section, we investigate some properties of negative order Changhee numbers and
polynomials.

With the help of functional equations including generating functions for special numbers and
polynomials, in this section we give relations between negative order Changhee polynomials, negative
order Euler polynomials, and combinatorial numbers including the Stirling numbers of the first kind,
and combinatorial numbers such as the numbers y1(n, k; λ), y3(n, k; λ, a, b), y4(n, k; λ, a, b), and B(n, k).

Combining (14) and (15), we get

H(t, x,−k) = (1 + t)xK(t,−k).

By using the above relation, we obtain

∞

∑
n=0

Ch(−k)
n (x)

tn

n!
=

∞

∑
n=0

(x)n
tn

n!

∞

∑
n=0

Ch(−k)
n

tn

n!
.

Therefore
∞

∑
n=0

Ch(−k)
n (x)

tn

n!
=

∞

∑
n=0

n

∑
j=0

(
n
j

)
(x)jCh(−k)

n−j
tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the aforementioned equation, we arrive at
the following theorem.

Theorem 1. Let n ∈ N0. Then we have

Ch(−k)
n (x) =

n

∑
j=0

(
n
j

)
(x)jCh(−k)

n−j . (21)

We note that Equation (14) is related to some well-known special numbers and polynomials. That
is, replace t by et − 1 into (14), we have the following functional equation:

H(et − 1, x,−k) = FE(t, x;−k).

Combining the above functional equation with (1) and (5), we obtain

∞

∑
m=0

E(−k)
m (x)

tm

m!
=

∞

∑
n=0

Ch(−k)
n (x)FS2(t, n; 1).
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Combining the left side of the above equation with Equation (5) and after the necessary algebraic
computations, we get the following result:

∞

∑
m=0

E(−k)
m (x)

tm

m!
=

∞

∑
n=0

Ch(−k)
n (x)

∞

∑
m=0

S2(m, n)
tm

m!
.

Since S2(m, n) = 0 for n > m, the aforementioned equation reduces to the following equation:

∞

∑
m=0

E(−k)
m (x)

tm

m!
=

∞

∑
m=0

m

∑
n=0

Ch(−k)
n (x)S2(m, n)

tm

m!
.

Comparing the coefficients of tn

n! on the both sides of the aforementioned equation, we arrive at
the following theorem.

Theorem 2. Let m ∈ N0. Then we have

E(−k)
m (x) =

m

∑
n=0

Ch(−k)
n (x)S2(m, n). (22)

In Reference [8], Simsek gave the following formula:

E(−k)
m = 2−kB(m, k). (23)

Combining (22) with (23), we arrive at the following theorem:

Theorem 3. Let m ∈ N0. Then we have

B(m, k) = 2k
m

∑
n=0

Ch(−k)
n S2(m, n).

Computation Formula for Changhee Polynomials of Negative Order

Here we give some computation formulas for Changhee polynomials of negative order from (14).
By using Equation (14), we get

1
2k

k

∑
j=0

(
k
j

)
(1 + t)j+x =

∞

∑
n=0

Ch(−k)
n (x)

tn

n!
.

We assume that |t| < 1. Thus, we get

∞

∑
n=0

1
2k

k

∑
j=0

(
k
j

)
(x + j)n

tn

n!
=

∞

∑
n=0

Ch(−k)
n (x)

tn

n!
. (24)

Comparing the coefficients of tn

n! on the both sides of the aforementioned equation and using
Vandermonde’s identity, we get the following theorem.

Theorem 4. Let n ∈ N0. Then we have

Ch(−k)
n (x) =

1
2k

k

∑
j=0

n

∑
l=0

(
k
j

)(
n
l

)
(j)n−l(x)l . (25)

Computation formula for the negative order Changhee numbers is given by the following theorem.
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Theorem 5. Let n ∈ N0. Then we have

Ch(−k)
n =

1
2k

k

∑
j=0

(
k
j

)
(j)n. (26)

Proof. By applying binomial theorem to Equation (15) with |t| < 1, we get

1
2k

∞

∑
n=0

k

∑
j=0

(
k
j

)(
j
n

)
tn =

∞

∑
n=0

Ch(−k)
n

tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the aforementioned equation, we arrive at
the desired result.

Combining (25) with (26), we get the following corollary:

Corollary 1. Let n ∈ N0. Then we have

Ch(−k)
n (x) =

n

∑
l=0

(
n
l

)
(x)lCh(−k)

n−l . (27)

We now give some alternative computation formula for the Changhee numbers of order −k.
Combining (4) with (26), we get the following corollary:

Corollary 2. Let n ∈ N0. Then we have

Ch(−k)
n =

1
2k

k

∑
j=0

n

∑
m=0

(
k
j

)
S1(n, m)jm. (28)

Combining (18) with (28), we get the following corollary:

Corollary 3. Let n ∈ N0. Then we have

Ch(−k)
n =

1
2k

n

∑
m=0

(
k
j

)
S1(n, m)B(m, k). (29)

By using (24), we have the following result:

Corollary 4. Let n ∈ N0. Then we have

Ch(−k)
n (x) =

1
2k

k

∑
j=0

(
k
j

)
(x + j)n. (30)

Combining (24) with (4), we have the following result:

Corollary 5.

Ch(−k)
n (x) =

1
2k

k

∑
j=0

n

∑
l=0

(
k
j

)
S1(n, l) (x + j)l . (31)

By using (28) or (29) with help of Equation (1) in the work of Simsek [1], a few values of the
Changhee numbers and polynomials of order −k for are n = 0, 1, 2, 3, 4 given in Table 1.
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Table 1. A few values of negative order Changhee numbers and polynomials for n = 0, 1, 2, 3, 4.

Ch(−k)
n Ch(−k)

n (x)

0 1 1

1 k
2 x + k

2

2 k2−k
4 x2 + (k− 1)x + k2−k

4

3 k3−3k2+4k
8 x3 + 3

(
k
2 − 1

)
x2 +

(
3k2−9k+8

4

)
x + k3−3k2+4k

8

4 k4−6k3+19k2−28k
16 x4 + (2k− 6)x3 +

(
3
2 k2 − 6k + 11

)
x2 +

(
k3−3k2+4k

2

)
x +

(
k4−6k3+19k2−28k

16 .
)

3. Partial Derivative of the Generating Function H(t, x,−k)

In this section, we consider partial derivative of Equation (14) with respect to x and t, we get two
partial differential equations for the function H(t, x,−k). By using these equations, we give derivative
formulas and a recurrence relation for the polynomials Ch(−k)

n (x).
By applying partial derivative operators ∂

∂x and ∂
∂t to Equation (14), we get the following partial

derivative equations, respectively:

∂m

∂xm {H(t, x;−k)} = m!H(t, x,−k)FS1(t, m) (32)

and
∂

∂t
{H(t, x;−k)} = 2kH(t, x, 1− k) + xH(t, x− 1,−k), (33)

or
∂

∂t
{H(t, x;−k)} = k

2
F(t, 0, 1)H(t, x,−k) + xH(t, x− 1,−k). (34)

By combining (32) with (2), we get

∞

∑
n=0

∂m

∂xm

{
Ch(−k)

n (x)
} tn

n!
= m!

∞

∑
n=0

Ch(−k)
n (x)

tn

n!

∞

∑
j=0

S1(n, m)
tj

j!
.

Therefore

∞

∑
n=0

∂m

∂xm

{
Ch(−k)

n (x)
} tn

n!
= m!

∞

∑
n=0

n

∑
j=0

(
n
j

)
Ch(−k)

j (x)S1(n− j, m)
tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the aforementioned equation, we arrive at
the following theorem.

Theorem 6. Let m ∈ N. Then we have

∂m

∂xm

{
Ch(−k)

n (x)
}
= m!

n

∑
j=0

(
n
j

)
Ch(−k)

j (x)S1(n− j, m). (35)

By combining (33) with (14), we obtain

∞

∑
n=1

Ch(−k)
n (x)

tn−1

(n− 1)!
= 2k

∞

∑
n=0

Ch(1−k)
n (x)

tn

n!
+ x

∞

∑
n=0

Ch(−k)
n (x− 1)

tn

n!
.

Therefore
∞

∑
n=0

Ch(−k)
n+1 (x)

tn

n!
=

∞

∑
n=0

{
2kCh(1−k)

n (x) + xCh(−k)
n (x− 1)

} tn

n!
.
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Comparing the coefficients of tn

n! on the both sides of the aforementioned equation, we arrive at
the following theorem.

Theorem 7. Let m ∈ N. Then we have

Ch(−k)
n+1 (x) = 2kCh(1−k)

n (x) + xCh(−k)
n (x− 1). (36)

By combining (34) with (10) and (14), we get

∞

∑
n=1

Ch(−k)
n (x)

tn−1

(n− 1)!
=

k
2

∞

∑
n=0

n

∑
j=0

(
n
j

)
Chn−jCh(−k)

n (x)
tn

n!
+ x

∞

∑
n=0

Ch(−k)
n (x− 1)

tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the aforementioned equation, we arrive at
the following theorem.

Theorem 8. Let n ∈ N0. Then we have

Ch(−k)
n+1 (x) = k

n

∑
j=0

(−1)n−j n!
j!2n−j+1 Ch(−k)

j (x) + xCh(−k)
n (x− 1).

4. Integral Representations for Negative Order Changhee Polynomials

In this section, we give p-adic integrals and the Riemann integral representations for negative
order Changhee polynomials.

4.1. Riemann Integral Representation for Negative Order Changhee Polynomials

We integrate the Equation (14) over x in order to get an integral equation for the function
H(t, x,−k). By using these equations, we give integral formulas and recurrence relations for the
polynomials Ch(−k)

n (x).

Theorem 9. Let n ∈ N. Then we have

∫ u+1

u
Ch(−k)

n−1 (x)dx =
n

∑
j=0

(
n
j

) bn−j(0)
(

Ch(−k)
j (u + 1)− Ch(−k)

j (u)
)

n
. (37)

Proof. Integrating both side of Equation (10) from u to u + 1, we get

t
∫ u+1

u
H(t, x,−k)dx = Fb2(t, 0) (H(t, u + 1,−k)− H(t, u,−k)) .

We assume that this series is uniformly convergent. In this case, we can rearrange the summation
and integration.

∞

∑
n=0

n
∫ u+1

u
Ch(−k)

n−1 (x)dx
tn

n!
=

∞

∑
n=0

bn(0)
tn

n!

∞

∑
m=0

(
Ch(−k)

j (u + 1)− Ch(−k)
j (u)

) tm

m!
.

By using the Cauchy product rule, we get

∞

∑
n=0

n
∫ u+1

u
Ch(−k)

n−1 (x)dx
tn

n!
=

∞

∑
n=0

n

∑
j=0

(
n
j

)
bn−j(0)

(
Ch(−k)

j (u + 1)− Ch(−k)
j (u)

) tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the aforementioned equation, we arrive
arrive at the desired result.
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By using (8) and (25), we get

∫ u+1

u
Ch(−k)

n−1 (x)dx =
1
2k

k

∑
j=0

n

∑
l=0

(
k
j

)(
n
l

)
(j)n−1bl(u). (38)

By using (8) and (27), we have

∫ u+1

u
Ch(−k)

n−1 (x)dx =
n

∑
l=0

(
n
l

)
bl(u)Ch(−k)

n−l . (39)

4.2. p-Adic Integral Representations for Negative Order Changhee Polynomials

Let Zp denote the set of p-adic integers. The Volkenborn integral is defined by

∫
Zp

f (x) dµ1 (x) = lim
N→∞

1
pN

pN−1

∑
x=0

f (x) , (40)

where µ1 (x) is given as follows:

µ1 (x) =
1

pN

(cf. References [34,40,48]; see also the references cited in each of these earlier works).
The Daehee numbers Dn are defined by

Dn =
∫
Zp

(x)ndµ1 (x) =
(−1)nn!

n + 1
, (41)

where n ∈ N0 (cf. References [18,34,40]). By (41), it easily see that

∫
Zp

(x)ndµ1 (x) =
n

∑
l=0

S1(n, l)Bl , (42)

where Bl denotes the Bernoulli numbers and n ∈ N0 (cf. Reference [18]).
The fermionic p-adic integral is defined by

∫
Zp

f (x) dµ−1 (x) = lim
N→∞

pN−1

∑
x=0

(−1)x f (x) , (43)

where µ−1 (x) is given as follows:
µ−1 (x) = (−1)x

(cf. [26], see also References [24,40]; see also the references cited in each of these earlier works).
The Changhee numbers Chn are defined by

Chn =
∫
Zp

(x)ndµ−1 (x) = (−1)n2−nn!, (44)

where n ∈ N0 (cf. Reference [17]).
By applying the Volkenborn integral to (21), we have

∫
Zp

Ch(−k)
n (x)dµ1 (x) =

n

∑
j=0

(
n
j

)
Ch(−k)

n−j

∫
Zp

(x)jdµ1 (x) .
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Combining the aforementioned equation with (41), we get the following Volkenborn integral
representation for negative order Changhee polynomials:

∫
Zp

Ch(−k)
n (x)dµ1 (x) =

n

∑
j=0

(−1)j
(

n
j

) j!Ch(−k)
n−j

j + 1
(45)

and ∫
Zp

Ch(−k)
n (x)dµ1 (x) =

n

∑
j=0

(
n
j

)
DjCh(−k)

n−j . (46)

By applying fermionic p-adic integral to (21), we have

∫
Zp

Ch(−k)
n (x)dµ−1 (x) =

n

∑
j=0

(
n
j

)
Ch(−k)

n−j

∫
Zp

(x)jdµ−1 (x) . (47)

By (41) and (47), we obtain the following fermionic p-adic integral representation for negative
order Changhee polynomials:

∫
Zp

Ch(−k)
n (x)dµ−1 (x) =

n

∑
j=0

(−1)j
(

n
j

) j!Ch(−k)
n−j

2j (48)

and ∫
Zp

Ch(−k)
n (x)dµ−1 (x) =

n

∑
j=0

(
n
j

)
ChjCh(−k)

n−j . (49)

By using (14), we have

∞

∑
n=0

(x)n
tn

n!
=

∞

∑
n=0

k

∑
j=0

(
k
j

)
22k−j(n)jCh(−k)

n−j (x)
tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the aforementioned equation, we get

(x)n =
k

∑
j=0

(
k
j

)
22k−j(n)jCh(−k)

n−j (x). (50)

By applying the Volkenborn integral to the aforementioned equation, we obtain

∫
Zp

(x)ndµ1 (x) =
k

∑
j=0

(
k
j

)
22k−j(n)j

∫
Zp

Ch(−k)
n−j (x)dµ1 (x) .

Combining the aforementioned equation with (41), we obtain

k

∑
j=0

(
k
j

)
22k−j(n)j

∫
Zp

Ch(−k)
n−j (x)dµ1 (x) =

(−1)nn!
n + 1

. (51)

By applying fermionic p-adic integral to Equation (50), we get

∫
Zp

(x)ndµ−1 (x) =
k

∑
j=0

(
k
j

)
22k−j(n)j

∫
Zp

Ch(−k)
n−j (x)dµ−1 (x) .
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Combining the aforementioned equation with (44), we obtain

k

∑
j=0

(
k
j

)
22k−j(n)j

∫
Zp

Ch(−k)
n−j (x)dµ−1 (x) = (−1)n n!

2n . (52)

5. Identities and Relations

In this section, by using generating functions and their functional equations, we give many
interesting and novel identities and relations including Bernoulli numbers and polynomials of the
second kind, Euler numbers and polynomials, Stirling numbers, negative order Changhee numbers,
and combinatorial numbers such as y1(n, k; λ), y3(n, k; λ, a, b), and B(n, k).

Substituting t = λez − 1 into (15), we get the following functional equation:

k!
2k Fy1(z, k; λ) = K(λez − 1,−k).

Combining the aforementioned equation with Equation (5), we get

k!
2k

∞

∑
n=0

y1(n, k; λ)
tn

n!
=

∞

∑
n=0

Ch(−k)
n

∞

∑
m=0

S2(m, n : λ)
tm

m!
.

Comparing the coefficients of tn

n! on the both sides of the aforementioned equation, we get the
following theorem.

Theorem 10. Let n ∈ N0. Then we have

y1(n, k; λ) =
2k

k!

∞

∑
n=0

Ch(−k)
n S2(m, n : λ). (53)

Substituting λ = 1 into (53) and using (6), we get the following corollary:

Corollary 6. Let n ∈ N0. Then we have

y1(n, k; 1) =
2k

k!

m

∑
n=0

Ch(−k)
n S2(m, n).

Setting t = λet − 1 into Equation (14), we get the following functional equation:

k!λkFy3(t, k; λ; 2, 1) = 2k H(λet − 1, k;−k).

Combining the aforementioned equation with (5), (19) and (14), we get

k!λk

2k

∞

∑
m=0

y3(m, k; λ; 2, 1)
tm

m!
=

∞

∑
n=0

Ch(−k)
n (k)

∞

∑
m=0

S2(m, n; λ)
tm

m!
.

Therefore, after comparing the coefficients of tm

m! on the both sides of the aforementioned equation
and some calculation, we arrive at the following theorem:

Theorem 11. Let m ∈ N0. Then we have

y3(m, k; λ; 2, 1) =
2k

k!λk

∞

∑
n=0

Ch(−k)
n (k)S2(m, n; λ). (54)

Substituting λ = 1 into (54), and using (6), we get the following corollary:
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Corollary 7. Let m ∈ N0. Then we have

y3(m, k; 1; 2; 1) =
2k

k!

m

∑
n=0

Ch(−k)
n (k)S2(m, n). (55)

Combining (20) with (55), we obtain the following corollary:

Corollary 8. Let m ∈ N0. Then we have

y4(m, k; λ−1; 2, 1) = 2−k
∞

∑
n=0

Ch(−k)
n (k)S2(m, n; λ−1).

Combining (37) and (38), we arrive at the following theorem:

Theorem 12. Let n ∈ N0. Then we have

n

∑
j=0

(
n
j

)
bn−j(0)

(
Ch(−k)

j (u + 1)− Ch(−k)
j (u)

)
=

n
2k

k

∑
j=0

n

∑
l=0

(
k
j

)(
n
l

)
(j)n−1bl(u).

Combining (37) with (39), we arrive at the following theorem:

Theorem 13. Let n ∈ N0. Then we have

n

∑
j=0

(
n
j

)
bn−j(0)

(
Ch(−k)

j (u + 1)− Ch(−k)
j (u)

)
= n

n

∑
l=0

(
n
l

)
bl(u)Ch(−k)

n−l .

Combining (52) with (48), we get the following theorem.

Theorem 14. Let n ∈ N0. Then we have

k

∑
j=0

(
k
j

)
22k−j(n)j

n−j

∑
l=0

(−1)l
(

n− j
l

) l!Ch(−k)
n−j−l

2l = (−1)n n!
2n .

Combining (51) with (45), we get the following theorem.

Theorem 15. Let n ∈ N0. Then we have

k

∑
j=0

(
k
j

)
22k−j(n)j

n−j

∑
l=0

(−1)l
(

n− j
l

) l!Ch(−k)
n−j−l

l + 1
=

(−1)nn!
n + 1

.

6. Conclusions

Although many books, papers and other research theses about special functions, special numbers
and polynomials have been written in recent years, active, productive and applied studies are still
continuing in these fields. For this reason, generating functions for new families of special numbers
and polynomials involving Changhee numbers and polynomials of negative order and combinatorial
numbers are constructed. By considering these generating functions with their functional equations,
integral and differential equations, various properties for negative order Changhee numbers and
polynomials and some combinatorial numbers are obtained and studied. By using these equations, we
derive many new and novel identities and formulas for the Bernoulli numbers and polynomials, Euler
numbers and polynomials, Stirling numbers, combinatorial numbers and polynomials and Changhee
numbers and polynomials. As a result, formulas, identities and relations of this paper may potentially
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be used, not only in mathematics, but also in mathematical physics, computer sciences, engineering,
and so forth.
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