Two Fixed Point Theorems Concerning F-Contraction in Complete Metric Spaces
Abstract
:1. Introduction and Preliminaries
- (F1)
- F is strictly increasing: ;
- (F2)
- For each sequence in , if and only if;
- (F3)
- There exists such that .
- (i)
- if , then ;
- (ii)
- if , and , then .
2. Main Results
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Banach, S. Sur les opérationes dans les ensembles abstraits et leur application aux équation intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 1976, 215, 241–251. [Google Scholar] [CrossRef]
- Caristi, J.; Kirk, W.A. Geometric fixed point theory and inwardness conditions. In The Geometry of Metric and Linear Spaces; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1975; Volume 490, pp. 74–83. [Google Scholar]
- Chatterjea, S.K. Fixed-point theorems. Comtes Rendus L’Acad. Bulg. Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Ćirić, L.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar] [CrossRef]
- Ćirić, L.B. A new fixed-point theorem for contractive mappings. Publ. Inst. Math. 1981, 30, 25–27. [Google Scholar]
- Dugundji, J. Positive definite functions and coincidences. Fund. Math. 1976, 90, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Ekeland, I. On the variational principle. J. Math. Anal. Appl. 1974, 47, 324–353. [Google Scholar] [CrossRef] [Green Version]
- Geraghty, M. On contractive mappings. Proc. Am. Math. Soc. 1973, 40, 604–608. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Nadler, S.B., Jr. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Reich, S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
- Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
- Edelstein, M. On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 1962, 37, 74–79. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric space. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Secelean, N.A. Iterated function system consisting of F-contarctions. Fixed Point Theory Appl. 2013, 2013, 277. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, V.; Vetro, P. Fixed Point Result for F-contractive Mappings of Hardy-Rogers-Type. Filomat 2014, 28, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metic spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Ali, B.; Romaguera, S. Fixed and periodic points of generalized contractions in metric spaces. Fixed Point Theory Appl. 2013, 243. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Ali, B.; Romaguera, S. Generalized Contractions and Invariant Approximation Results on Nonconvex Subsets of Normed Spaces. Abstr. Appl. Anal. 2014, 2014, 391952. [Google Scholar] [CrossRef]
- Acar, O.; Altun, I. A fixed point theorem for multivalued mappings with δ-distance. Abstr. Appl. Anal. 2014, 2014, 497092. [Google Scholar] [CrossRef]
- Altun, I.; Olgun, M.; Minak, G. On a new class of multivalued weakly Picard operators in complete metric spaces. Taiwan. J. Math. 2015, 19, 659–672. [Google Scholar] [CrossRef]
- Batra, R.; Vashishta, S. Fixed point theorem for Fw-contractions in complete metric spaces. J. Nonlin. Anal. Appl. 2013, 2013, 211. [Google Scholar] [CrossRef]
- Batra, R.; Vashishta, S.; Kumar, R. Coincidence Point Theorem for a New Type of Contraction on Metric Spaces. Int. J. Math. Anal. 2014, 8, 1315–1320. [Google Scholar] [CrossRef]
- Batra, R.; Vashishta, S. Fixed points of an F-contraction on metric spaces with a graph. Int. J. Comp. Math. 2014, 91, 2483–2490. [Google Scholar] [CrossRef]
- Gupta, A. Fixed points of a new type of contractive mappings in G-metric spaces. Int. J. Adv. Math. 2014, 1, 56–61. [Google Scholar]
- Hussain, N.; Salimi, P. Suzuki-Wardowski type fixed point theorems for α-GF-contractions. Taiwan. J. Math. 2014. [Google Scholar] [CrossRef]
- Malhatra, S.K.; Radenovic, S.; Shukla, S. Some fixed point results without monotone property in partially ordered metric-like space. J. Egyptian Math. Soc. 2014, 22, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Paesano, D.; Vetro, C. Multi-valued F-contractions in O-complete partial metric spaces with application to Volterra type integral equation. RACSAM 2014, 108, 1005–1020. [Google Scholar] [CrossRef]
- Sgroi, M.; Vetro, C. Multi-valued F-contraction and the solutions of certain functional and integral equations. Filomat 2013, 27, 1259–1268. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Radenovic, S.; Kadelburg, Z. Some Fixed Point Theorems for Ordered F-Generalized Contractions in O-f-orbitally Complete Partial Metric Spaces. Theory Appl. Math. Comput. Sci. 2014, 4, 87–98. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, O.; Stan, G. Two Fixed Point Theorems Concerning F-Contraction in Complete Metric Spaces. Symmetry 2020, 12, 58. https://doi.org/10.3390/sym12010058
Popescu O, Stan G. Two Fixed Point Theorems Concerning F-Contraction in Complete Metric Spaces. Symmetry. 2020; 12(1):58. https://doi.org/10.3390/sym12010058
Chicago/Turabian StylePopescu, Ovidiu, and Gabriel Stan. 2020. "Two Fixed Point Theorems Concerning F-Contraction in Complete Metric Spaces" Symmetry 12, no. 1: 58. https://doi.org/10.3390/sym12010058
APA StylePopescu, O., & Stan, G. (2020). Two Fixed Point Theorems Concerning F-Contraction in Complete Metric Spaces. Symmetry, 12(1), 58. https://doi.org/10.3390/sym12010058