Viscosity Approximation Methods for a General Variational Inequality System and Fixed Point Problems in Banach Spaces
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moudafi, A. Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 2000, 241, 46–55. [Google Scholar] [CrossRef]
- Yao, Y.; Maruster, S. Strong convergence of an iterative algorithm for variational inequalities in Banach spaces. Math. Comput. Modell. 2011, 54, 325–329. [Google Scholar] [CrossRef]
- Ceng, L.C.; Yao, J.C.; Muglia, L. An extragradient-like approximation method for variational inequality problems and fixed point problems. Appl. Math. Comput. 2007, 190, 205–215. [Google Scholar] [CrossRef]
- Xie, S.; Imani, M.; Dougherty, E.R.; Braga-Neto, U.M. Nonstationary Linear Discriminant Analysis. In Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1 November 2017; pp. 161–165. [Google Scholar]
- Imnang, S. Viscosity iterative method for a new general system of variational inequalities in Banach spaces. J. Inequalities Appl. 2013, 2013, 249. [Google Scholar] [CrossRef][Green Version]
- Qin, X.; Cho, S.Y.; Kang, S.M. Convergence of an iterative algorithm for systems of variational inequalities and nonexpansive mappings with applications. J. Comput. Appl. Math. 2009, 233, 231–240. [Google Scholar] [CrossRef]
- Sen, M.D.L.; Muglia, L. Fixed and best proximity points of cyclic jointly accretive and contractive self-mappings. J. Appl. Math. 2012, 2012, 419–429. [Google Scholar]
- Pan, C.; Wang, Y. Generalized viscosity implicit iterative process for asymptotically non-expansive mappings in Banach spaces. Mathematics 2019, 7, 379. [Google Scholar] [CrossRef]
- Iiduka, H.; Takahashi, W.; Toyoda, M. Approximation of solutions of variational inequalities for monotone mappings. Pan. Math. J. 2004, 14, 49–61. [Google Scholar]
- Yao, Y.; Noor, M.A.; Noor, K.I.; Liou, Y.C.; Yaqoob, H. Modified extragradient methods for a system of variational inequalities in Banach spaces. Acta Appl. Math. 2010, 110, 1211–1224. [Google Scholar] [CrossRef]
- Ceng, L.C.; Petrusel, A.; Yao, J.C.; Yao, Y. Systems of variational inequalities with hierarchical variational inequality constraints for Lipschitzian pseudocontractions. Fixed Point Theory 2019, 20, 113–134. [Google Scholar] [CrossRef]
- Katchang, P.; Kumam, P. Convergence of iterative algorithm for finding common solution of fixed points and general system of variational inequalities for two accretive operators. Positivity 2012, 15, 281–295. [Google Scholar] [CrossRef]
- Cai, G.; Shehu, Y.; Iyiola, O.S. Iterative algorithms for solving variational inequalities and fixed point problems for asymptotically nonexpansive mappings in Banach spaces. Numer. Algorithms 2016, 73, 869–906. [Google Scholar] [CrossRef]
- Cai, G.; Shehu, Y.; Iyiola, O.S. Strong convergence theorems for fixed point problems for strict pseudo-contractions and variational inequalities for inverse-strongly accretive mappings in uniformly smooth Banach spaces. J. Fixed Point Theory Appl. 2019, 21, 41. [Google Scholar] [CrossRef]
- Ceng, L.C.; Petrusel, A.; Yao, J.C.; Yao, Y. Hybrid viscosity extragradient method for systems of variational inequalities, fixed points of nonexpansive mappings, zero points of accretive operators in Banach spaces. Fixed Point Theory 2018, 19, 487–502. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Kumam, P. Viscosity approximation methods base on generalized contraction mappings for a countable family of strict pseudo-contractions, a general system of variational inequalities and a generalized mixed equilibrium problem in Banach spaces. Math. Comput. Model. 2013, 58, 1814–1828. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Y. Iterative approximation for the common solutions of a infinite variational inequality system for inverse-strongly accretive mappings. J. Math. Comput. Sci. 2012, 6, 1660–1670. [Google Scholar]
- Reich, S. Asymptotic behavior of contractions in Banach spaces. J. Math. Anal. Appl. 1973, 44, 57–70. [Google Scholar] [CrossRef]
- Liu, L.S. Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 1995, 194, 114–125. [Google Scholar] [CrossRef]
- Yao, Y.; Shahzad, N.; Liou, Y.C. Modified semi-implicit midpoint rule for nonexpansive mappings. Fixed Point Theory Appl. 2015, 2015, 166. [Google Scholar] [CrossRef]
- Lim, T.C.; Xu, H.K. Fixed point theorems for asymptotically nonexpansive mappings. Nonlinear Anal. 1994, 22, 1345–1355. [Google Scholar] [CrossRef]
- Xu, H.K. Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 2004, 298, 279–291. [Google Scholar] [CrossRef]
- Kamimura, S.; Takahashi, W. Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 2002, 13, 938–945. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Pan, C. Viscosity Approximation Methods for a General Variational Inequality System and Fixed Point Problems in Banach Spaces. Symmetry 2020, 12, 36. https://doi.org/10.3390/sym12010036
Wang Y, Pan C. Viscosity Approximation Methods for a General Variational Inequality System and Fixed Point Problems in Banach Spaces. Symmetry. 2020; 12(1):36. https://doi.org/10.3390/sym12010036
Chicago/Turabian StyleWang, Yuanheng, and Chanjuan Pan. 2020. "Viscosity Approximation Methods for a General Variational Inequality System and Fixed Point Problems in Banach Spaces" Symmetry 12, no. 1: 36. https://doi.org/10.3390/sym12010036
APA StyleWang, Y., & Pan, C. (2020). Viscosity Approximation Methods for a General Variational Inequality System and Fixed Point Problems in Banach Spaces. Symmetry, 12(1), 36. https://doi.org/10.3390/sym12010036