Visual Lateralization in the Cephalopod Mollusk Octopus vulgaris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Scoring of Animals’ Responses Toward the Target
2.3. Experimental Procedure
2.3.1. Testing Asymmetry in Predatory Response: Natural Stimulus
2.3.2. Testing Asymmetry in Predatory Response: Artificial Stimulus
2.3.3. Testing Asymmetry in Turning: The T-Maze
2.4. Data Analysis
3. Results
3.1. Asymmetry in Predatory Response: Natural and Artificial Stimuli
3.2. T-Maze
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rogers, L.J.; Vallortigara, G.; Andrew, R.J. Divided Brains: The Biology and Behaviour of Brain Asymmetries; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Rogers, L.J. Asymmetry of brain and behavior in animals: Its development, function, and human relevance. Genesis 2014, 52, 555–571. [Google Scholar] [CrossRef]
- Versace, E.; Vallortigara, G. Forelimb preferences in human beings and other species: Multiple models for testing hypotheses on lateralization. Front. Psychol. 2015, 6, 233. [Google Scholar] [CrossRef] [PubMed]
- Dadda, M.; Koolhaas, W.H.; Domenici, P. Behavioural asymmetry affects escape performance in a teleost fish. Biol. Lett. 2010, 6, 414–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stancher, G.; Sovrano, V.A.; Vallortigara, G. Chapter 2—Motor asymmetries in fishes, amphibians, and reptiles. In Progress in Brain Research; Forrester, G.S., Hopkins, W.D., Hudry, K., Lindell, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 238, pp. 33–56. [Google Scholar]
- Tommasi, L.; Andrew, R.; Vallortigara, G. Eye use in search is determined by the nature of task in the domestic chick (Gallus gallus). Behav. Brain Res. 2000, 112, 119–126. [Google Scholar] [CrossRef]
- Frasnelli, E.; Vallortigara, G.; Rogers, L.J. Left–right asymmetries of behaviour and nervous system in invertebrates. Neurosci. Biobehav. Rev. 2012, 36, 1273–1291. [Google Scholar] [CrossRef]
- Jereb, P.; Roper, C. Chambered Nautiluses and Sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae); FAO: Rome, Italy, 2005; Volume 1, p. 262. [Google Scholar]
- Jereb, P.; Roper, C. Cephalopods of the World. An Annotated and Illustrated Catalogue of Species Known to Date. Volume 2. Myopsid and Oegopsid Squids; FAO: Rome, Italy, 2010; p. 605. [Google Scholar]
- Jereb, P.; Roper, C.; Norman, M.; Finn, J. Cephalopods of the World. An Annotated and Illustrated Catalogue of Species Known to Date. Volume 3. Octopods and Vampire Squids; FAO: Rome, Italy, 2016; p. 370. [Google Scholar]
- Guerra, Á. Functional Anatomy: Macroscopic Anatomy and Post-mortem Examination. In Handbook of Pathogens and Diseases in Cephalopods; Springer: Berlin, Germany, 2019; pp. 11–38. [Google Scholar] [Green Version]
- Watanuki, N.; Kawamura, G.; Kaneuchi, S.; Iwashita, T. Role of vision in behavior, visual field, and visual acuity of cuttlefish Sepia esculenta. Fish. Sci. 2000, 66, 417–423. [Google Scholar] [CrossRef]
- Williamson, R. A sensory basis for orientation in cephalopods. J. Mar. Biol. Assoc. U.K. 1995, 75, 83–92. [Google Scholar] [CrossRef]
- Packard, A. The behaviour of Octopus vulgaris. Bulletin de l’Institut océanographique 1963, Numéro spécial 1D. 35–49. [Google Scholar]
- Borrelli, L. Testing the Contribution of Relative Brain Size and Learning Capabilities on the Evolution of Octopus Vulgaris and Other Cephalopods. Ph.D. Thesis, Stazione Zoologica Anton Dohrn, Italy & Open University, Rome, Italy, 2007. [Google Scholar]
- Borrelli, L.; Gherardi, F.; Fiorito, G. A Catalogue of Body Patterning in Cephalopoda; Stazione Zoologica A. Dohrn; Firenze University Press: Napoli, Italy, 2006. [Google Scholar]
- Hanlon, R.T.; Messenger, J.B. Cephalopod Behaviour, 2nd ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Duval, P.; Chichery, M.-P.; Chichery, R. Prey capture by the cuttlefish (Sepia officinalis L): An experimental study of two strategies. Behav. Process. 1984, 9, 13–21. [Google Scholar] [CrossRef]
- Messenger, J.B. Learning in the cuttlefish, Sepia. Anim. Behav. 1973, 21, 801–826. [Google Scholar] [CrossRef]
- Messenger, J.B. The visual attack of the cuttlefish, Sepia officinalis. Anim. Behav. 1968, 16, 342–357. [Google Scholar] [CrossRef]
- Schnell, A.K.; Jozet-Alves, C.; Hall, K.C.; Radday, L.; Hanlon, R.T. Fighting and mating success in giant Australian cuttlefish is influenced by behavioural lateralization. Proc. R. Soc. B 2019, 286, 20182507. [Google Scholar] [CrossRef] [PubMed]
- Schnell, A.K.; Hanlon, R.T.; Benkada, A.; Jozet-Alves, C. Lateralization of eye use in cuttlefish: Opposite direction for anti-predatory and predatory behaviors. Front. Physiol. 2016, 7, 620. [Google Scholar] [CrossRef] [PubMed]
- Schnell, A.K.; Bellanger, C.; Vallortigara, G.; Jozet-Alves, C. Visual asymmetries in cuttlefish during brightness matching for camouflage. Curr. Biol. 2018, 28, R925–R926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, C.; Chichery, R.; Boal, J.G.; Dickel, L. Orientation in the cuttlefish Sepia officinalis: Response versus place learning. Anim. Cogn. 2007, 10, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, H. The positive learning process in Octopus vulgaris. Z. Vgl. Physiol. 1963, 47, 191–214. [Google Scholar] [CrossRef]
- Maldonado, H. The visual attack learning system in Octopus vulgaris. J. Theor. Biol. 1963, 5, 470–488. [Google Scholar] [CrossRef]
- Byrne, R.A.; Kuba, M.; Griebel, U. Lateral asymmetry of eye use in Octopus vulgaris. Anim. Behav. 2002, 64, 461–468. [Google Scholar] [CrossRef]
- Byrne, R.A.; Kuba, M.J.; Meisel, D.V. Lateralized eye use in Octopus vulgaris shows antisymmetrical distribution. Anim. Behav. 2004, 68, 1107–1114. [Google Scholar] [CrossRef]
- Fiorito, G.; von Planta, C.; Scotto, P. Problem solving ability of Octopus vulgaris Lamarck (Mollusca, Cephalopoda). Behav. Neural Biol. 1990, 53, 217–230. [Google Scholar] [CrossRef]
- Moriyama, T.; Gunji, Y.P. Autonomous learning in maze solution by Octopus. Ethology 1997, 103, 499–513. [Google Scholar] [CrossRef]
- Bierens de Haan, J.A. Versuche ueber den Farbensinn und das psychische Leben von Octopus vulgaris. Z. Vgl. Physiol. 1926, 4, 766–796. [Google Scholar] [CrossRef]
- Boycott, B.B. Learning in Octopus vulgaris and other cephalopods. Pubbl. Staz. Zool. Napoli. 1954, 25, 67–93. [Google Scholar]
- Buytendijk, F.J.J. Das Verhalten von Octopus nach teilweiser zerstörung des “Gehims”. Arch. Neert. Physiol. 1933, 18, 24–70. [Google Scholar]
- Wells, M.J. Learning and movement in octopuses. Anim. Behav 1965, (Suppl. 1), 115–128. [Google Scholar]
- Hvorecny, L.M.; Grudowski, J.L.; Blakeslee, C.J.; Simmons, T.L.; Roy, P.R.; Brooks, J.A.; Hanner, R.M.; Beigel, M.E.; Karson, M.A.; Nichols, R.H.; et al. Octopuses (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Anim. Cogn. 2007, 10, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Boal, J.G.; Dunham, A.W.; Williams, K.T.; Hanlon, R.T. Experimental evidence for spatial learning in octopuses (Octopus bimaculoides). J. Comp. Psychol. 2000, 114, 246. [Google Scholar] [CrossRef]
- Amodio, P.; Andrews, P.; Salemme, M.; Ponte, G.; Fiorito, G. The Use of Artificial Crabs for Testing Predatory Behavior and Health in the Octopus. Altex-Altern. Anim. Exp. 2014, 31, 494–499. [Google Scholar]
- Fiorito, G.; Scotto, P. Observational Learning in Octopus vulgaris. Science 1992, 256, 545–547. [Google Scholar] [CrossRef]
- Forrester, G.S.; Leavens, D.A.; Quaresmini, C.; Vallortigara, G. Target animacy influences gorilla handedness. Anim. Cogn. 2011, 14, 903–907. [Google Scholar] [CrossRef] [Green Version]
- Forrester, G.S.; Quaresmini, C.; Leavens, D.A.; Spiezio, C.; Vallortigara, G. Target animacy influences chimpanzee handedness. Anim. Cogn. 2012, 15, 1121–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisazza, A.; Facchin, L.; Pignatti, R.; Vallortigara, G. Lateralization of detour behaviour in poeciliid fish: The effect of species, gender and sexual motivation. Behav. Brain Res. 1998, 91, 157–164. [Google Scholar] [CrossRef]
- Bisazza, A.; Pignatti, R.; Vallortigara, G. Detour tests reveal task-and stimulus-specific behavioural lateralization in mosquitofish (Gambusia holbrooki). Behav. Brain Res. 1997, 89, 237–242. [Google Scholar] [CrossRef]
- Ghirlanda, S.; Vallortigara, G. The evolution of brain lateralization: A game-theoretical analysis of population structure. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004, 271, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Ghirlanda, S.; Frasnelli, E.; Vallortigara, G. Intraspecific competition and coordination in the evolution of lateralization. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.; Frasnelli, E.; Versace, E. Lateralized antennal control of aggression and sex differences in red mason bees, Osmia bicornis. Sci. Rep. 2016, 6, 29411. [Google Scholar] [CrossRef]
- Jozet-Alves, C.; Viblanc, V.A.; Romagny, S.; Dacher, M.; Healy, S.D.; Dickel, L. Visual lateralization is task and age dependent in cuttlefish, Sepia officinalis. Anim. Behav. 2012, 83, 1313–1318. [Google Scholar] [CrossRef]
- Jozet-Alves, C.; Romagny, S.; Bellanger, C.; Dickel, L. Cerebral correlates of visual lateralization in Sepia. Behav. Brain Res. 2012, 234, 20–25. [Google Scholar] [CrossRef]
- Frasnelli, E.; Vallortigara, G. Individual-level and population-level lateralization: Two sides of the same coin. Symmetry 2018, 10, 739. [Google Scholar] [CrossRef]
Animal # | Natural Stimulus | Artificial Stimulus | T-Maze | ||||||
---|---|---|---|---|---|---|---|---|---|
LI | Z-Score | p | LI | Z-Score | p | LI | Z-score | p | |
1 | 0.50 | 1.44 | 0.150 | 0.00 | 0.00 | 1.000 | 0.10 | 0.22 | 0.820 |
2 | 0.17 | 0.29 | 0.770 | −0.20 | −0.91 | 0.360 | −0.30 | −1.12 | 0.260 |
3 | 0.27 | 0.60 | 0.550 | 0.27 | 1.28 | 0.200 | 0.10 | 0.22 | 0.820 |
4 | 0.83 | 2.60 | 0.010 * | 0.48 | 2.51 | 0.010 * | −0.20 | −0.67 | 0.500 |
5 | −0.33 | −0.87 | 0.390 | 0.35 | 1.80 | 0.070 | −0.30 | −1.12 | 0.260 |
6 | −0.33 | −0.87 | 0.390 | −0.55 | −2.87 | 0.003 ** | 0.10 | 0.22 | 0.820 |
7 | 0.33 | 0.87 | 0.390 | 0.80 | 4.20 | >0.001 *** | −0.20 | −0.67 | 0.500 |
8 | 0.08 | 0.00 | 1.000 | 0.27 | 1.28 | 0.200 | −0.10 | −0.22 | 0.820 |
9 | −0.17 | 0.29 | 0.770 | 0.29 | 1.32 | 0.180 | −0.10 | −0.22 | 0.820 |
10 | −0.67 | 2.02 | 0.040 * | −0.59 | −2.97 | 0.002 ** | 0.10 | 0.22 | 0.820 |
11 | 0.08 | 0.00 | 1.000 | 0.27 | 1.28 | 0.200 | 0.00 | 0.00 | 1.000 |
12 | −0.69 | 2.22 | 0.020 * | −0.47 | −2.37 | 0.020 | −0.30 | −1.12 | 0.260 |
13 | −0.38 | 1.11 | 0.270 | −0.87 | −4.56 | >0.001 *** | 0.00 | 0.00 | 1.000 |
14 | −0.23 | 0.55 | 0.580 | −0.27 | −1.28 | 0.200 | −0.20 | −0.67 | 0.500 |
15 | −0.17 | 0.29 | 0.770 | −0.27 | −1.28 | 0.200 | 0.10 | 0.22 | 0.820 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frasnelli, E.; Ponte, G.; Vallortigara, G.; Fiorito, G. Visual Lateralization in the Cephalopod Mollusk Octopus vulgaris. Symmetry 2019, 11, 1121. https://doi.org/10.3390/sym11091121
Frasnelli E, Ponte G, Vallortigara G, Fiorito G. Visual Lateralization in the Cephalopod Mollusk Octopus vulgaris. Symmetry. 2019; 11(9):1121. https://doi.org/10.3390/sym11091121
Chicago/Turabian StyleFrasnelli, Elisa, Giovanna Ponte, Giorgio Vallortigara, and Graziano Fiorito. 2019. "Visual Lateralization in the Cephalopod Mollusk Octopus vulgaris" Symmetry 11, no. 9: 1121. https://doi.org/10.3390/sym11091121
APA StyleFrasnelli, E., Ponte, G., Vallortigara, G., & Fiorito, G. (2019). Visual Lateralization in the Cephalopod Mollusk Octopus vulgaris. Symmetry, 11(9), 1121. https://doi.org/10.3390/sym11091121