Research on Moving Target Tracking Based on FDRIG Optical Flow
Abstract
:1. Introduction
2. Related Work
3. Principle and Implementation of FDRIG Optical Flow
3.1. Theory of Optical Flow
3.2. FDRIG Optical Flow Algorithm
4. Experimental Studies and Discuss
4.1. Experiment 1 on one Vehicle
4.1.1. Description of the Experimental Process
4.1.2. Parameter Setting in Halcon Software Based on FDRIG Optical Flow
4.1.3. Results and Discussion
4.2. Analysis and Discussion of Experiment 2 on Multi-Vehicles Motion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garcia, J.; Gardel, A.; Bravo, I.; Lazaro, J.L.; Martinez, M.; Rodriguez, D. Directional People Counter Based on Head Tracking. IEEE Trans. Ind. Electron. 2013, 60, 3991–4000. [Google Scholar] [CrossRef]
- Muddamsetty, S.M.; Sidibé, D.; Trémeau, A.; Mériaudeau, F. Salient objects detection in dynamic scenes using color and texture features. Multimed. Tools Appl. 2017, 77, 5461–5474. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.B.; Wang, M.; Zhang, D.Y.; Huang, X.S. An Approach for Moving Object Detection Using Continuing Tracking Optical Flow. J. Chin. Comput. Syst. 2014, 35, 643–647. [Google Scholar]
- Jazayeri, A.; Cai, H.; Zheng, J.Y.; Tuceryan, M. Vehicle Detection and Tracking in Car Video Based on Motion Model. IEEE Trans. Intell. Transp. Syst. 2011, 12, 583–595. [Google Scholar] [CrossRef]
- Pijnacker Hordijk, B.J.; Scheper, K.Y.; De Croon, G.C. Vertical landing for micro air vehicles using event-based optical flow. J. Field Robot. 2018, 35, 69–90. [Google Scholar] [CrossRef]
- Guan, W.; Chen, X.; Huang, M.; Liu, Z.; Wu, Y.; Chen, Y.; Wu, X. High-Speed Robust Dynamic Positioning and Tracking Method Based on Visual Visible Light Communication Using Optical Flow Detection and Bayesian Forecast. IEEE Photonics J. 2018, 10, 1–22. [Google Scholar] [CrossRef]
- Schuster, T.; Weickert, J. On the Application of Projection Methods for Computing Optical Flow Fields. Inverse Probl. Imaging 2017, 1, 673–690. [Google Scholar]
- Horn, B.K.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.A.; Rashwan, H.A.; Mertsching, B.; García, M.A.; Puig, D. Illumination-Robust Optical Flow Using a Local Directional Pattern. IEEE Trans. Circuits Syst. Video Technol. 2014, 24, 1499–1508. [Google Scholar] [CrossRef]
- Bao, L.; Yang, Q.; Jin, H. Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow. IEEE Trans. Image Process. 2014, 23, 4996–5006. [Google Scholar] [CrossRef]
- Muhammad, K.; Hamza, R.; Ahmad, J.; Lloret, J.; Wang, H.; Baik, S.W.; Wang, H.H.G. Secure Surveillance Framework for IoT Systems Using Probabilistic Image Encryption. IEEE Trans. Ind. Inform. 2018, 14, 3679–3689. [Google Scholar] [CrossRef]
- Zhong, Y.; Ma, A.; Ong, Y.S.; Zhu, Z.; Zhang, L. Computational intelligence in optical remote sensing image processing. Appl. Soft Comput. 2018, 64, 75–93. [Google Scholar] [CrossRef]
- Rashwan, H.A.; Puig, D.; Garcia, M.A. Improving the robustness of variational optical flow through tensor voting. Comput. Vis. Image Underst. 2012, 116, 953–966. [Google Scholar] [CrossRef]
- Bung, D.B.; Valero, D. Optical flow estimation in aerated flows. J. Hydraul. Res. 2016, 54, 575–580. [Google Scholar] [CrossRef]
- Bengtsson, T.; McKelvey, T.; Lindström, K. Optical flow estimation on image sequences with differently exposed frames. Opt. Eng. 2015, 54, 093103. [Google Scholar] [CrossRef]
- Lan, H.; Zhou, W.; Qi, Y. Sparse optical flow target extraction and tracking in dynamic backgrounds. J. Image Graph. 2016, 21, 771–780. [Google Scholar]
- Qin, X.-B.; Chai, Z. Optical flow algorithm based on optimized motion estimation. J. Sichuan Univ. 2014, 51, 475–479. [Google Scholar]
- Kumaran, S.K.; Mohapatra, S.; Dogra, D.P.; Roy, P.P.; Kim, B.G. Computer vision-guided intelligent traffic signaling for isolated intersections. Expert Syst. Appl. 2019, 134, 267–278. [Google Scholar] [CrossRef]
- Aminfar, A.H.; Davoodzadeh, N.; Aguilar, G. Application of optical flow algorithms to laser speckle imaging. Microvasc. Res. 2019, 122, 52–59. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.; Zhang, C.; Li, B. An effective motion object detection method using optical flow estimation under a moving camera. J. Vis. Commun. Image Represent. 2018, 55, 215–228. [Google Scholar] [CrossRef]
- Sengar, S.S.; Mukhopadhyay, S. Detection of moving objects based on enhancement of optical flow. Optik 2017, 145, 130–141. [Google Scholar] [CrossRef]
- Sun, D.; Sudderth, E.B.; Black, M.J. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. Adv. Neural Inf. Process. Syst. 2010, 10, 2226–2234. [Google Scholar]
- Brox, T.; Bruhn, A.; Papenberg, N.; Weickert, J. High accuracy optical flow estimation based on a theory for warping. In Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004. [Google Scholar]
- Qian, X.; Guo, L.; Yu, B. Adaptive Gaussian filter based on object scale. Comput. Eng. Appl. 2010, 46, 14–20. [Google Scholar]
- Wang, W. Design of gear defect detection system based on the Halcon. J. Mech. Transm. 2014, 38, 60–63. [Google Scholar]
- Zhang, Q.; Shen, H.; Shen, M. The Quality Detection of the Non-Mark Printing Image Based on Halcon. J. Shantou Univ. 2011, 26, 63–68. [Google Scholar]
- Zhang, Q.; Zhang, N. An improved optical flow algorithm based on global minimum energy function. J. North. Univ. China 2014, 35, 330–336. [Google Scholar]
Optical flow algorithm | HS Optical Flow | LK Optical Flow | FDRIG Optical Flow |
---|---|---|---|
Time of optical flow field (s) | 4 | 1 | 0.5 |
Optical Flow Algorithm | AAE | SD |
---|---|---|
HS optical flow algorithm | 10.58° | 16.20° |
LK optical flow algorithm | 7.19° | 11.23° |
Weickert algorithm | 6.15° | 8.86° |
FDRIG optical flow algorithm | 2.26° | 5.31° |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, L.; Wang, C. Research on Moving Target Tracking Based on FDRIG Optical Flow. Symmetry 2019, 11, 1122. https://doi.org/10.3390/sym11091122
Gong L, Wang C. Research on Moving Target Tracking Based on FDRIG Optical Flow. Symmetry. 2019; 11(9):1122. https://doi.org/10.3390/sym11091122
Chicago/Turabian StyleGong, Lixiong, and Canlin Wang. 2019. "Research on Moving Target Tracking Based on FDRIG Optical Flow" Symmetry 11, no. 9: 1122. https://doi.org/10.3390/sym11091122
APA StyleGong, L., & Wang, C. (2019). Research on Moving Target Tracking Based on FDRIG Optical Flow. Symmetry, 11(9), 1122. https://doi.org/10.3390/sym11091122