Does Functional Lateralization in Birds Have any Implications for Their Welfare?
Abstract
:1. Introduction
2. Studies of Lateralization Conducted in Laboratory Settings
3. Evidence of Lateralization in Field Studies
4. General Pattern of Avian Lateralization and the Advantage of Being Lateralized
5. Development and the Role of Light
6. What Evidence Is there that Functional Lateralization has Implications for the Welfare of Birds?
6.1. Exposure to Light During Incubation of Birds Raised in Flocks on Commercial Farms
6.2. Experience during Early Post-Hatching Development in Chickens
6.3. Stress during Incubation or after Hatching in Chickens
6.4. Emotion and Eye Use to View a Stimulus
6.5. Relevance of Lateralization to Welfare of Pet Birds in Captivity
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rogers, L.J.; Vallortigara, G.; Andrew, R.J. Divided Brains: The Biology and Behaviour of Brain Asymmetries; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Rogers, L.J.; Vallortigara, G. When and why did brains break symmetry. Symmetry 2015, 7, 2181–2194. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Güntürkün, O. The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries; Academic Press: London, UK, 2018. [Google Scholar]
- Frasnelli, E.; Vallortigara, G.; Rogers, L.J. Left-right asymmetries of behaviour and nervous system in invertebrates. Neurosci. Biobehav. Rev. 2012, 36, 1273–1291. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J.; Vallortigara, G. From antenna to antenna: Lateral shift of olfactory memory recall by honeybees. PLoS ONE 2008, 3, e2340. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J.; Rigosi, E.; Frasnelli, E.; Vallortigara, G. A right antenna for social behaviour in honeybees. Sci. Rep. 2013, 3, 2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nottebohm, F. Neural lateralization of vocal control in a Passerine bird: I. Song. J. Exp. Zool. 1971, 177, 229–261. [Google Scholar] [CrossRef] [PubMed]
- Nottebohm, F. Neural lateralization of vocal control in a Passerine bird: II. Sub-song, calls, and a theory of vocal learning. J. Exp. Zool. 1972, 179, 35–50. [Google Scholar] [CrossRef]
- Nottebohm, F. Asymmetries in Neural Control of Vocalization in the Canary. In Lateralization of the Nervous System; Harnard, S., Doty, R.W., Goldstein, L., Jaynes, J., Krauthamer, G., Eds.; Academic Press: New York, NY, USA, 1977; pp. 23–44. [Google Scholar]
- Phan, M.L.; Gergues, M.M.; Mahidadia, S.; Jimenez-Castillo, J.; Vicario, D.; Bieszczad, K.M. HDAC3 inhibitor RGFP966 modulates neural memory for vocal communication signals in a songbird model. Front. Syst. Neurosci. 2017, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Prather, J.F.; Okanoya, K.; Bolhuis, J.J. Brains of birds and babies: Neural parallels between birdsong and speech acquisition. Neurosci. Biobehav. Rev. 2017, 81, 225–237. [Google Scholar] [CrossRef]
- Rogers, L.J.; Anson, J.M. Lateralisation of function in the chicken fore-brain. Pharmacol. Biochem. Behav. 1979, 10, 679–686. [Google Scholar] [CrossRef]
- Rogers, L.J. Light experience and asymmetry of brain function in chickens. Nature 1982, 297, 223–225. [Google Scholar] [CrossRef]
- Andrew, R.J.; Mench, J.; Rainey, C. Right-left asymmetry of response to visual stimuli in the domestic chick. In Analysis of Visual Behavior; Ingle, D.J., Goodale, M.A., Mansfield, R.J., Eds.; MIT Press: Cambridge, MA, USA, 1982; pp. 225–236. [Google Scholar]
- Mench, J.; Andrew, R.J. Lateralisation of a food search task in the domestic chick. Behav. Neural. Biol. 1986, 46, 107–114. [Google Scholar] [CrossRef]
- Rogers, L.J.; Zappia, J.V.; Bullock, S.P. Testosterone and eye-brain asymmetry for copulation in chickens. Experientia 1985, 41, 1447–1449. [Google Scholar] [CrossRef]
- Vallortigara, G.; Cozzutti, C.; Tommasi, L.; Rogers, L.J. How birds use their eyes: Opposite left-right specialization for the lateral and frontal visual hemifield in the domestic chick. Curr. Biol. 2001, 11, 29–33. [Google Scholar] [CrossRef]
- Vallortigara, G.; Andrew, R.J. Lateralization of response to change in a model partner by chicks. Anim. Behav. 1991, 41, 187–194. [Google Scholar] [CrossRef]
- Vallortigara, G.; Andrew, R.J. Differential involvement of right and left hemisphere in individual recognition in the domestic chick. Behav. Proc. 1994, 33, 41–58. [Google Scholar] [CrossRef]
- Daisley, J.N.; Mascalzoni, E.; Rosa-Salva, O.; Rugani, R.; Regolin, L. Lateralization of social cognition in the domestic chicken (Gallus gallus). Phil. Trans. R. Soc. B 2009, 364, 965e981. [Google Scholar] [CrossRef] [PubMed]
- Daisley, J.N.; Vallortigara, G.; Regolin, L. Logic in an asymmetrical (social) brain: Transitive inference in the young domestic chick. Soc. Neurosci. 2010, 5, 309–319. [Google Scholar] [CrossRef]
- Rosa-Salva, O.; Daisley, J.N.; Regolin, L.; Vallortigara, G. Lateralization of social learning in the domestic chick, Gallus gallus domesticus: learning to avoid. Anim. Behav. 2009, 78, 847–856. [Google Scholar] [CrossRef]
- Dharmaretnam, M.; Rogers, L.J. Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behav. Brain Res. 2005, 162, 62–70. [Google Scholar] [CrossRef]
- Rogers, L.J. Evolution of hemispheric specialisation: Advantages and disadvantages. Brain Lang. 2000, 73, 236–253. [Google Scholar] [CrossRef]
- Rogers, L.J. The two hemispheres of the avian brain: their differing roles in perceptual processing and the expression of behaviour. J. Ornithol. 2012, 153, S61–S74. [Google Scholar] [CrossRef]
- Rugani, R.; Salva, O.R.; Regolin, L.; Vallortigara, G. Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behav. Brain Res. 2015, 290, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.J.; Brennan, A. Sharply timed and lateralized events at the time of establishment of long term memory. Physiol. Behav. 1985, 34, 547–556. [Google Scholar] [CrossRef]
- Andrew, R.J. The differential roles of right and left sides of the brain in memory formation. Behav. Brain Res. 1999, 98, 289–295. [Google Scholar] [CrossRef]
- Rogers, L.J. Light input and the reversal of functional lateralization in the chicken brain. Behav. Brain Res. 1990, 38, 211–221. [Google Scholar] [CrossRef]
- Güntürkün, O.; Kesch, S. Visual lateralization during feeding in pigeons. Behav. Neurosci. 1987, 101, 433–435. [Google Scholar] [CrossRef] [PubMed]
- Von Fersen, L.; Güntürkün, O. Visual memory lateralization in pigeons. Neuropsychologia 1990, 28, 1–7. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Aust, U.; Huber, L.; Hausmann, M.; Güntürkün, O. Lateralized cognition: asymmetrical and complementary strategies of pigeons during discrimination of the “human concept”. Cognition 2007, 104, 315–344. [Google Scholar] [CrossRef]
- Xiao, Q.; Güntürkün, O. Asymmetrical commissural control of the subdominant hemisphere in pigeons. Cell. Rep. 2018, 25, 1171–1180. [Google Scholar] [CrossRef]
- Freund, N.; Valencia-Alfonso, C.E.; Kirsch, J.; Brodmann, K.; Manns, M.; Güntürkün, O. Asymmetric top-down modulation of ascending visual pathways in pigeons. Neurosychologia 2016, 83, 37–47. [Google Scholar] [CrossRef]
- Diekamp, B.; Regolin, L.; Güntürkün, O.; Vallortigara, G. A left-sided visuospatial bias in birds. Curr. Biol. 2005, 15, R372–R373. [Google Scholar] [CrossRef] [PubMed]
- Pollonara, E.; Guilford, T.; Rossi, M.; Bingman, V.P.; Gagliardo, A. Right hemisphere advantage in the development of route fidelity in homing pigeons. Anim. Behav. 2017, 123, 395–409. [Google Scholar] [CrossRef]
- Tommasi, L.; Vallortigara, G. Encoding geometric and landmark information in the left and right hemispheres of the avian brain. Behav. Neurosci. 2001, 115, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Clayton, N.; Krebs, J.R. Memory for spatial and object specific cues in food-storing and non-storing birds. J. Comp. Physiol. A 1994, 174, 371–379. [Google Scholar] [CrossRef]
- Alonso, Y. Lateralization of visual guided behavior during feeding in zebra finches (Taeniopygia guttata). Behav. Proc. 1998, 43, 257–263. [Google Scholar] [CrossRef]
- Rogers, L.J.; Koboroff, A.; Kaplan, G. Lateral asymmetry of brain and behaviour in the zebra finch, Taeniopygia guttata. Symmetry 2018, 10, 679. [Google Scholar] [CrossRef]
- Workman, L.; Andrew, R.J. Asymmetries of eye use in birds. Anim. Behav. 1986, 34, 1582–1584. [Google Scholar] [CrossRef]
- Ten Cate, C.; Baauw, A.; Ballintijn, M.; Van der Horst, I. Lateralization of orientation in sexually active zebra finches: Eye use asymmetry of locomotion bias? Anim. Behav. 1990, 39, 992–994. [Google Scholar] [CrossRef]
- George, I.; Hara, E.; Hessler, N.A. Behavioral and neural lateralization of vision in courtship singing of the zebra finch. J. Neurobiol. 2006, 66, 1164–1173. [Google Scholar] [CrossRef]
- Templeton, J.J.; McCracken, B.G.; Sher, M.; Mountjoy, D.J. An eye for beauty: Lateralized visual stimulation of courtship behaviour and mate preferences in male zebra finches, Taeniopygia. guttata. Behav. Proc. 2014, 102, 33–39. [Google Scholar] [CrossRef]
- Andrew, R.J.; Rogers, L.J. The Nature of Lateralization in Tetrapods. In Comparative Vertebrate Lateralization; Rogers, L.J., Andrew, R.J., Eds.; Cambridge University Press: New York, NY, USA, 2002; pp. 94–125. [Google Scholar]
- Pryke, S.R.; Giffith, S.C. Red dominates black: agonistic signalling among head morphs in the colour polymorphic Gouldian finch. Proc. R. Soc. B 2005, 273, 949–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Templeton, J.J.; Mountjoy, D.J.; Pryke, S.R.; Griffith, S.C. In the eye of the beholder: visual mate choice lateralization in a polymorphic songbird. Biol. Lett. 2012, 8, 924–927. [Google Scholar] [CrossRef] [PubMed]
- Valenti, A.; Sovrano, V.A.; Zucca, P.; Vallortigara, G. Visual lateralisation in quails (Coturnix coturnix). Laterality 2003, 8, 67–78. [Google Scholar] [CrossRef]
- Gülbetekin, E.; Güntürkün, O.; Dural, S.; çetinkaya, H. Asymmetry of visually guided sexual behaviour in adult Japanese quail (Coturnix japonica). Laterality 2007, 12, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Gülbetekin, E.; Güntürkün, O.; Dural, S.; çetinkaya, H. Visual asymmetries in Japanese quail (Coturnix japonica) retain a lifelong potential for plasticity. Behav. Neurosci. 2009, 123, 815–821. [Google Scholar] [CrossRef]
- MacNeilage, P.; Rogers, L.J.; Vallortigara, G. Origins of the left and right brain. Sci. Am. 2009, 301, 60–67. [Google Scholar] [CrossRef]
- Franklin, W.E.; Lima, S.L. Laterality in avian vigilance: Do sparrows have a favourite eye? Anim. Behav. 2001, 62, 879–885. [Google Scholar] [CrossRef]
- Rogers, L.J. Advantages and disadvantages of lateralization. In Comparative Vertebrate Lateralization; Rogers, L.J., Andrew, R.J., Eds.; Cambridge University Press: New York, NY, USA, 2002; pp. 126–153. [Google Scholar]
- Ventolini, N.; Ferrero, E.A.; Sponza, S.; Della-Chiesa, A.; Vallortigara, G. Laterality in the wild: Preferential hemifield use during predatory and sexual behaviour in the black-winged stilt. Anim. Behav. 2005, 69, 1077–1084. [Google Scholar] [CrossRef]
- Vallortigara, G.; Rogers, L.J.; Bisazza, A.; Lippolis, G.; Robins, A. Complementary right and left hemifield use for predatory and agonistic behaviour in toads. Neuroreport 1998, 9, 3341–3344. [Google Scholar] [CrossRef]
- Kaplan, G. Audition and hemispheric specialization in songbirds and new evidence from Australian magpies. Symmetry 2017, 9, 99. [Google Scholar] [CrossRef]
- Koboroff, A.; Kaplan, G.; Rogers, L.J. Hemispheric specialization in Australian magpies (Gymnorhina tibicen) shown as eye preferences during response to a predator. Brain. Res. Bull. 2008, 76, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.M.; Robakiewicz, P.E.; Tuttle, E.M.; Rogers, L.J. Behavioural lateralization in the Australian magpie (Gymnorhina tibicen). Laterality 2006, 11, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J.; Kaplan, G. An eye for a predator: Lateralization in Birds, with Particular Reference to the Australian Magpie. In Behavioral and Morphological Asymmetries in Vertebrates; Malashichev, Y.B., Deckel, A.W., Eds.; Landes Bioscience Publishing: Austin, TX, USA, 2006; pp. 47–57. [Google Scholar]
- Kaplan, G.; Rogers, L.J. Stability of referential signalling across time and locations: Testing alarm calls of Australian magpies (Gymnorhina tibicen) in urban and rural Australia and in Fiji. PeerJ 2013, 1, e112. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G. Foraging success in a wild species of bird varies depending on which eye is used for anti-predator vigilance. Laterality 2013, 18, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Randler, C. Eye preference for vigilance during feeding in coot, Fulica atra, and geese, Anser anser and Anser cygnoides. Laterality 2005, 10, 535–543. [Google Scholar] [PubMed]
- Grace, J.; Craig, D.P. The development and lateralization of prey delivery in a bill load-holding bird. Anim. Behav. 2008, 75, 2005–2011. [Google Scholar] [CrossRef]
- Stor, T.; Rebstock, G.A.; Borboroglu, P.G.; Boesma, P.D. Lateralization (handedness) in Magellanic penguins. PeerJ 2019, 7, 6936. [Google Scholar] [CrossRef]
- Robins, A.; Lippolis, G.; Bisazza, A.; Vallortigara, G.; Rogers, L.J. Lateralization of agonistic responses and hind-limb use in toads. Anim. Behav. 1998, 56, 875–881. [Google Scholar] [CrossRef]
- Austin, N.A.; Rogers, L.J. Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses (Equus caballus). Anim. Behav. 2012, 83, 239–247. [Google Scholar] [CrossRef]
- Krakauer, A.H.; Blundell, M.A.; Scanlan, T.N.; Weschsler, M.S.; McCloskey, E.A.; Yu, J.H.; Patricelli, G.L. Successfully mating male sage-grouse show greater laterality in courtship and aggressive interactions. Anim. Behav. 2016, 111, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Leliveld, L.M.C.; Langbein, J.; Puppe, B. The emergence of emotional lateralization: Evidence in non-human vertebrates and implications for farm animals. Appl. Anim. Behav. Sci. 2013, 145, 1–14. [Google Scholar] [CrossRef]
- Scarf, H.M.; Stenstrom, K.; Dainson, M.; Benson, T.; Fernandez-Juricic, E.; Hauber, M.E. Mimicry-dependent lateralization of visual inspection of foreign eggs by American robins. Biol. Lett. 2019, 15. [Google Scholar] [CrossRef]
- Vallortigara, G.; Rogers, L.J. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav. Brain. Sci. 2005, 28, 575–589. [Google Scholar] [CrossRef] [PubMed]
- Anfora, G.; Frasnelli, E.; Maccangani, B. Behavioural and electrophysiological lateralisation in a social (Apis mellifora) but not a non-social (Osmia cornuta) species of bee. Behav. Brain. Res. 2010, 206, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J.; Frasnelli, E.; Versace, E. Lateralized antennal control of aggression and sex differences in red mason bees, Osmia bicornis. Sci. Rep. 2016, 6, 29411. [Google Scholar] [CrossRef] [PubMed]
- Güntürkün, O.; Diekamp, B.; Manns, M.; Nottlemann, F.; Prior, H.; Schwarz, A.; Skiba, M. Asymmetry pays: Visual lateralization improves discrimination success in pigeons. Curr. Biol. 2000, 10, 1079–1081. [Google Scholar]
- Magat, M.; Brown, C. Laterality enhances cognition in Australian parrots. Proc. R. Soc. Lond. B 2009, 276, 4155–4162. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.J.; Zucca, P.; Vallortigara, G. Advantage of having a lateralized brain. Proc. R. Soc. Lond. 2004, 271, S420–S422. [Google Scholar] [CrossRef]
- Skiba, M.; Diekamp, B.; Güntürkün, O. Embryonic light stimulation induces different asymmetries in visuoperceptual and visuomotor pathways of pigeons. Behav. Brain Res. 2002, 134, 149–156. [Google Scholar] [CrossRef]
- Rogers, L.J.; Sink, H.S. Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure. Exp. Brain Res. 1988, 70, 378–384. [Google Scholar] [CrossRef]
- Güntürkün, O.; Hellmann, B.; Melsbach, G.; Prior, H. Asymmetries of representation in the visual system of pigeons. Neuroreport 1998, 9, 4127–4130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manns, M.; Stöckens, F. Functional and structural comparison of visual lateralization in birds–similar but still different. Front. Psychol. 2014, 5, 206. [Google Scholar] [CrossRef] [PubMed]
- Manns, M.; Römling, J. The impact of asymmetrical light input on cerebral hemispheric specialization and interhemispheric cooperation. Nat. Commun. 2012, 3, 696. [Google Scholar] [CrossRef] [PubMed]
- Letzner, S.; Patzke, N.; Verhaal, J.; Manns, M. Shaping a lateralized brain: asymmetrical light experience modulates access to visual interhemispheric information in pigeons. Sci. Rep. 2014, 4, 4253. [Google Scholar] [CrossRef] [PubMed]
- Letzner, S.; Güntürkün, O.; Lor, S.; Pawlik, P.J.; Manns, M. Visuospatial attention in the lateralised brain of pigeons–a matter of ontogenetic light experiences. Sci. Rep. 2017, 7, 15547. [Google Scholar] [CrossRef] [PubMed]
- Güntürkün, O.; Ocklenburg, S. Ontogenesis of lateralization. Neuron 2017, 94, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Chiandetti, C.; Lemaire, B.; Versace, E.; Vallortigara, G. Early-and late-light embryonic stimulation modulates similarly chicks’ ability to filter out distractors. Symmetry 2017, 9, 84. [Google Scholar] [CrossRef]
- Chiandetti, C.; Galliussi, J.; Andrew, R.J.; Vallortigara, G. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Sci. Rep. 2013, 3, 2701. [Google Scholar] [CrossRef] [Green Version]
- Zappia, J.V.; Rogers, L.J. Light experience during development affects asymmetry of fore-brain function in chickens. Dev. Brain Res. 1983, 11, 93–106. [Google Scholar] [CrossRef]
- Chiandetti, C.; Vallortigara, G. Distinct effect of early and later embryonic light-stimulation on chicks’ lateralization. Neuroscience 2019, 414, 1–7. [Google Scholar] [CrossRef]
- Rogers, L.J.; Workman, L. Light exposure during incubation affects competitive behaviour in domestic chicks. Appl. Anim. Behav. Sci. 1989, 23, 187–198. [Google Scholar] [CrossRef]
- Wichman, A.; Freire, R.; Rogers, L.J. Light exposure during incubation and social and vigilance behaviour in domestic chicks. Laterality 2009, 14, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Archer, G.S.; Mench, J.A. Natural incubation patterns and the effects of exposing eggs to light at various times during incubation on post-hatch fear and stress responses in broiler (meat) chickens. Appl. Anim. Behav. Sci. 2014, 152, 44–51. [Google Scholar] [CrossRef]
- Archer, G.S.; Mench, J.A. Exposing avian embryos to light affects post-hatch antipredator fear responses. Appl. Anim. Behav. Sci. 2017, 186, 80–84. [Google Scholar] [CrossRef]
- Riedstra, B.; Groothuis, T.G.G. Prenatal light exposure affects early feather pecking behaviour in the domestic chick. Anim. Behav. 2004, 67, 1037–1042. [Google Scholar] [CrossRef]
- Archer, G.S.; Shivaprasad, H.L.; Mench, J.A. Effect of providing light during incubation on the health, productivity and behaviour of broiler chickens. Poult. Sci. 2009, 88, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J.; Ehrlich, D. Asymmetry in the chicken forebrain during development and a possible involvement of the supraoptic decussation. Neurosci. Lett. 1983, 37, 123–127. [Google Scholar] [CrossRef]
- Workman, L.; Andrew, R.J. Simultaneous changes in behaviour and in lateralization during development of male and female domestic chicks. Anim. Behav. 1989, 38, 596–605. [Google Scholar] [CrossRef]
- Freire, R.; Rogers, L.J. Experience during a period of right hemispheric dominance alters attention to spatial information in the domestic chick. Anim. Behav. 2007, 74, 413–418. [Google Scholar] [CrossRef]
- Wichman, A.; Rogers, L.J.; Freire, R. Visual lateralization and development of spatial and social spacing behaviour of chicks (Gallus gallus domesticus). Behav. Proc. 2009, 81, 14–19. [Google Scholar] [CrossRef]
- Schwabl, H. Developmental changes and among-sibling variation of corticosterone levels in altricial avian species. Gen. Comp. Endocrin. 1999, 116, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Hayward, L.S.; Wingfield, J.C. Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype. Gen. Comp. Endocrinol. 2004, 135, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Elf, P.K.; Fivizzani, A.J. Changes in steroid levels in yolks of the leghorn chicken, Gallus domesticus, during embryonic development. J. Exp. Zool. 2002, 293, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J.; Deng, C. Corticosterone treatment of the chick embryo affects light-stimulated development of the thalamofugal visual pathway. Behav. Brain Res. 2005, 159, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Freire, R.; van Dort, S.; Rogers, L.J. Pre-and post-hatching effects of corticosterone treatment on behavior of the domestic chick. Horm. Behav. 2006, 49, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, R.; Rettenbacher, S.; Groothuis, T.G.G. Prenatal stress in birds: Pathways, effects, function and perspectives. Neurosci. Biobehav. Rev. 2011, 35, 1484–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, S.R.; Templeton, J.J.; Fernández-Juricic, E. How do birds look at their world? A novel avian visual fixation strategy. Behav. Ecol. Sociobiol. 2018, 72, 38. [Google Scholar] [CrossRef]
- Moore, B.A.; Tyrrell, L.P.; Pita, D.; Bininda-Edmonds, O.R.P.; Fernández-Juricic, E. Does retinal configuration make the head and eyes of foveate birds move? Sci. Rep. 2017, 7, 38406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawkins, M. What are birds looking at? Head movements and eye use in chickens. Anim. Behav. 2002, 63, 991–998. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.J.; Andrew, R.J. Frontal and lateral visual field use by chicks after treatment of testosterone. Anim. Behav. 1989, 38, 394–405. [Google Scholar] [CrossRef]
- Harris, L.J. Footedness in parrots: three centuries of research, theory, and mere surmise. Canad. J. Psychol. 1989, 43, 369–396. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J. Lateralisation in the avian brain. Bird. Behav. 1980, 2, 1–12. [Google Scholar]
- Brown, C.; Magat, M. Cerebral lateralization determines hand preferences in Australian parrots. Biol. Lett. 2011, 7, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Snyder, P.J.; Harris, L.J. Lexicon size and its relation to foot preference in the African Grey parrot (Psittacus erithacus). Neuropsychologia 1997, 35, 919–926. [Google Scholar] [CrossRef]
- Rogers, L.J. Cognition and animal welfare. Wiley Interdiscip. Rev: Cogn. Sci. 2010, 1, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Saltzman, K.M.; Weems, C.F.; Reiss, A.L.; Carrión, V.G. Mixed lateral preference in posttraumatic stress disorder. J. Nerv. Ment. Dis. 2006, 194, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Spivak, B.; Segal, M.; Mester, R.; Weizman, A. Lateral preference in post-traumatic stress disorder. Psychol. Med. 1998, 28, 229–232. [Google Scholar] [CrossRef]
- Mutluer, T.; Sar, V.; Kose-Demiray, C.; Arslan, H.; Tamer, S.; Inal, S.; Kacar, A.S. Lateralization of neurobiological response in adolescents with post-traumatic stress disorder related to severe childhood sexual abuse: the Tri-modal Reaction (T-MR) model of protection. J. Trauma. Dissoc. 2018, 19, 108–125. [Google Scholar] [CrossRef]
- Ritov, G.; Barnetz, Z. PTSD and Lateral Preference: Overview of the Relationship between Distress Symptoms and Handedness. In Comprehensive Guide to Post-Traumatic Stress Disorders; Martin, C., Preedy, V., Patel, V., Eds.; Springer, Cham: Basel, Switzerland, 2016; pp. 435–453. [Google Scholar]
- Ocklenburg, S.; Korte, S.M.; Peterburs, J.; Wolf, O.T.; Güntürkün, O. Stress and Laterality–the comparative perspective. Physiol. Behav. 2016, 164, 321–329. [Google Scholar] [CrossRef]
- Demirbas, Y.S.; Isparta, S.; Ozturk, H.; Safak, E.; Emre, B.; Piskin, I.; Kaya, U.; Sagmanligil, V.; Akgul, B.; Da Graca Pereira, G. Functional cerebral asymmetry in dogs living under different environmental conditions. Behav. Proc. 2019, 165, 4–8. [Google Scholar] [CrossRef]
- Fernández-Lázaro, G.; Latorre, R.; Alonso-García, E.; Núnez, I.B. Nonhuman primate welfare: Can there be a relationship between personality, lateralization and physiological indicators? Behav. Proc. 2019, 166, 103897. [Google Scholar] [CrossRef] [PubMed]
- Zucca, P.; Cerri, F.; Carluccio, A.; Baciadonna, L. Space availability influence laterality in donkeys (Equus asinus). Behav. Proc. 2011, 88, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J.; Andrew, R.J.; Burne, T.H.J. Light exposure of the embryo and development of behavioural lateralisation in chicks: I. Olfactory responses. Behav. Brain Res. 1998, 97, 195–200. [Google Scholar] [CrossRef]
- Deng, C.; Rogers, L.J. Social recognition and approach in the chick: Lateralization and effect of visual experience. Anim. Behav. 2002, 63, 697–706. [Google Scholar] [CrossRef]
Left Hemisphere (Right Eye) | Right Hemisphere (Left Eye) |
---|---|
Juncos look outward while feeding | Tree sparrows look outward while feeding |
Kookaburras look down at ground | |
Caspian terns hold fish with head to right | Coots and swan geese look at ground while foraging |
Stilts more successful in prey capture | Stilts look at female when courting before copulation |
Magpies in low arousal approach Magpies in Fiji to scan for predator | Magpies high arousal inspection of predator, scanning for and detecting an aerial predator, and before fleeing |
Sandpipers to scan for predators | Magellanic penguins in aggression |
Sage-grouse to view female when courting | Sage-grouse in aggression Sage-grouse in copulation |
Left Hemisphere (Right Eye) | Right Hemisphere (Left Eye) |
---|---|
Attends to categories of stimuli—notices only large differences between stimuli (chick, pigeon, zebra finch, quail, stilt*) | Detects novelty—notices small differences between stimuli (chick, pigeon) |
Discrimination of objects (food) from distracting stimuli (pebbles) (chick, pigeon) | Social recognition and behaviour (chick) |
Colour discrimination (pigeon) | Response to biological motion (chick) |
Proximal spatial attention (chick, crow) | Global spatial attention (chick, pigeon, crow, kookaburra*) |
Sexual choice/courtship (zebra finch, Gouldian finch, sage-grouse*) | Copulation (chick, quail, stilt*, sage-grouse*) |
Approach to examine (magpie*) | Withdraw and escape (magpie*) |
Unclear function (junco*, sandpiper*, coot*, swan goose*, starling*)—see text | Attack/aggression (chick, penguin*, sage-grouse*) |
Attention to predators (chick, zebra finch, tree sparrow*, magpie*) | |
Fear and distress (chick, magpie*) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogers, L.J.; Kaplan, G. Does Functional Lateralization in Birds Have any Implications for Their Welfare? Symmetry 2019, 11, 1043. https://doi.org/10.3390/sym11081043
Rogers LJ, Kaplan G. Does Functional Lateralization in Birds Have any Implications for Their Welfare? Symmetry. 2019; 11(8):1043. https://doi.org/10.3390/sym11081043
Chicago/Turabian StyleRogers, Lesley J., and Gisela Kaplan. 2019. "Does Functional Lateralization in Birds Have any Implications for Their Welfare?" Symmetry 11, no. 8: 1043. https://doi.org/10.3390/sym11081043