# Note on Type 2 Degenerate q-Bernoulli Polynomials

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Type 2 Degenerate q-Bernoulli Polynomials

**Theorem**

**1.**

**Theorem**

**2.**

**Theorem**

**3.**

**Theorem**

**4.**

**Theorem**

**5.**

**Theorem**

**6.**

**Lemma**

**1.**

**Theorem**

**7.**

**Proof.**

## 3. Further Remarks

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Kim, D.S.; Kim, H.Y.; Kim, D.; Kim, T. Identities of symmetry for type 2 Bernoulli and Euler polynomials. Symmetry
**2019**, 11, 613. [Google Scholar] [CrossRef] - Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math.
**1979**, 15, 51–88. [Google Scholar] - Kim, D.S.; Kim, H.Y.; Pyo, S.-S.; Kim, T. Some identities of special numbers and polynomials arising from p-adic integrals on ${\mathbb{Z}}_{p}$. Adv. Differ. Equ.
**2019**, 2019, 190. [Google Scholar] [CrossRef] - Kim, T. q-Volkenborn integration. Russ. J. Math. Phys.
**2002**, 9, 288–299. [Google Scholar] - Kim, D.S.; Kim, T.; Kim, H.Y.; Kwon, J. A note on type 2 q-Bernoulli and type 2 q-Euler polynomials. J. Inequal. Appl.
**2019**. accepted. [Google Scholar] [CrossRef] - Araci, S.; Acikgoz, M. A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math.
**2012**, 22, 399–406. [Google Scholar] - Carlitz, L. Expansions of q-Bernoulli numbers. Duke Math. J.
**1958**, 25, 355–364. [Google Scholar] [CrossRef] - Jang, G.-W.; Kim, T. A note on type 2 degenerate Euler and Bernoulli polynomials. Adv. Stud. Contemp. Math.
**2019**, 29, 147–159. [Google Scholar] - Kim, D.S.; Dolgy, D.V.; Kim, D.; Kim, T. Some identities on r-central factorial numbers and r-central Bell polynomials. Adv. Differ. Equ.
**2019**. accepted. [Google Scholar] [CrossRef] - Diarra, B. The p-adic q-distributions, Advances in ultrametric analysis. Contemp. Math.
**2013**, 596, 45–62. [Google Scholar] - Kim, T.; Kim, D.S. Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys.
**2017**, 24, 241–248. [Google Scholar] [CrossRef] [Green Version] - Kim, D.S.; Kim, T.; Jang, G.-W. A note on degenerate Stirling numbers of the first kind. Proc. Jangjeon Math. Soc.
**2018**, 21, 393–404. [Google Scholar] - Kim, T. On degenerate q-Bernoulli polynomials. Bull. Korean Math. Soc.
**2016**, 53, 1149–1156. [Google Scholar] [CrossRef] - Schikhof, W.H. Ultrametric Calculus. An Introduction to p-Adic Analysis; Cambridge Studies in Advanced Mathematics, 4; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kim, D.S.; Dolgy, D.V.; Kwon, J.; Kim, T.
Note on Type 2 Degenerate *q*-Bernoulli Polynomials. *Symmetry* **2019**, *11*, 914.
https://doi.org/10.3390/sym11070914

**AMA Style**

Kim DS, Dolgy DV, Kwon J, Kim T.
Note on Type 2 Degenerate *q*-Bernoulli Polynomials. *Symmetry*. 2019; 11(7):914.
https://doi.org/10.3390/sym11070914

**Chicago/Turabian Style**

Kim, Dae San, Dmitry V. Dolgy, Jongkyum Kwon, and Taekyun Kim.
2019. "Note on Type 2 Degenerate *q*-Bernoulli Polynomials" *Symmetry* 11, no. 7: 914.
https://doi.org/10.3390/sym11070914