Docking of Cisplatin on Fullerene Derivatives and Some Cube Rhombellane Functionalized Homeomorphs
Abstract
:1. Introduction
2. Methods
2.1. Docking Procedure
2.2. Results and Discussion
3. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Dou, Q.P. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des. 2010, 16, 1813–1825. [Google Scholar] [CrossRef] [PubMed]
- Desoize, B.; Madoulet, C. Particular aspects of platinum compounds used at present in cancer treatment. Crit. Rev. Oncol. Hematol. 2002, 42, 317–325. [Google Scholar] [CrossRef]
- Fraval, H.N.; Rawlings, C.J.; Roberts, J.J. Increased sensitivity of UV-repair-deficient human cells to DNA bound platinum products which unlike thymine dimers are not recognized by an endonuclease extracted from micrococcus luteus. Mutat. Res. 1978, 51, 121–132. [Google Scholar] [CrossRef]
- Wiernik, P.H.; Yeap, B.; Vogl, S.E.; Kaplan, B.H.; Comis, R.L.; Falkson, G.; Davis, T.E.; Fazzini, E.; Cheuvart, B.; Horton, J. Hexamethylmelamine and low or moderate dose cisplatin with or without pyridoxine for treatment of advanced ovarian carcinoma: A study of the eastern cooperative oncology group. Cancer Invest. 1992, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wiltshaw, E.; Kroner, T. Phase II study of cis-dichlorodiammineplatinum[II] (NSC-119875] in advanced adenocarcinoma of the ovary. Cancer Treat. Rep. 1976, 60, 55–60. [Google Scholar] [PubMed]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szefler, B.; Czeleń, P.; Szczepanik, A.; Cysewski, P. Does affinity of cisplatin to B-Vitamins impair the therapeutic effect in the case of patient with lung cancer consuming carrot or beet juice? Anticancer Agents Med Chem. 2019, 25. [Google Scholar] [CrossRef] [PubMed]
- ISI Web of Science. 2010.
- Gomes, J.A.N.F.; Mallion, R.B. Aromaticity and ring currents. Chem. Rev. 2001, 101, 1349–1383. [Google Scholar] [CrossRef]
- Cyrański, M.K.; Krygowski, T.M.; Katritzky, A.R.; Schleyer, P.v.R. To what extent can aromaticity be defined uniquely? J. Org. Chem. 2002, 67, 1333–1338. [Google Scholar] [CrossRef]
- Chen, Z.; Wannere, C.S.; Crominboeuf, C.; Puchta, R.; Schleyer, R.v.P. nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 2005, 105, 3842–3888. [Google Scholar] [CrossRef]
- Diudea, M.V.; Lungu, C.N.; Nagy, C.L. Cube-rhombellane related structures: A drug perspective. Molecules 2018, 23, 2533. [Google Scholar] [CrossRef] [PubMed]
- Diudea, M.V.; Pîrvan-Moldovan, A.; Pop, R.; Medeleanu, M. Medeleanu, Energy of graphs and remote graphs, in hypercubes, rhombellanes and fullerenes. MATCH Commun. Math. Comput. Chem. 2018, 80, 835–852. [Google Scholar]
- Pauling, L.; Wheland, G.W. The nature of the chemical bond. V. The quantum mechanical calculation of the resonance energy of benzene and naphthalene and the hydrocarbon free radicals. J. Chem. Phys. 1933, 1, 362–374. [Google Scholar] [CrossRef]
- Daudel, R.; Lefebre, R.; Moser, C. Quantum Chemistry; Interscience: New York, NY, USA, 1959. [Google Scholar]
- Diudea, M.V. Rhombellanic diamond. Fullerenes, Nanotubes and Carbon. Nanomaterials 2018. [Google Scholar] [CrossRef]
- Pop, R.; Medeleanu, M.; Diudea, M.V.; Szefler, B.; Cioslowski, J. Fullerenes patched by flowers. Cent. Eur. J. Chem. 2013, 11, 527–534. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.1; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Randić, M. Aromaticity of Polycyclic Conjugated Hydrocarbons. Chem. Rev. 2003, 103, 3449–3605. [Google Scholar]
- Diudea, M.V.; Nagy, C.L. Periodic Nanostructures; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Szefler, B. Nanotechnology, from quantum mechanical calculations up to drug delivery. Int. J. Nanomed. 2018, 13, 6143–6176. [Google Scholar] [CrossRef] [PubMed]
- Pubchem. Available online: https://pubchem.ncbi.nlm.nih.gov// (accessed on 11 June 2019).
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Shoichet, B.K.; Kuntz, I.D.; Bodian, D.L. Molecular docking using shape descriptors. J. Comput. Chem. 2004, 13, 380–397. [Google Scholar] [CrossRef]
- Dhananjayan, K.; Kalathil, K.; Sumathy, A.; Sivanandy, P. A computational study on binding affinity of bio-flavonoids on the crystal structure of 3-hydroxy-3-methyl-glutaryl-CoA reductase—An insilico molecular docking approach. Der Pharma Chemica. 2014, 6, 378–387. [Google Scholar]
- Abagyan, R.; Totrov, M. High-throughput docking for lead generation. Current Opin. Chem. Biol. 2001, 5, 375. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
Binding Energy (kcal/mol) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
360b | −2.66 | −2.6 | −2.61 | −2.49 | −2.45 | −2.42 | −2.33 | −2.44 | −2.25 | −2.42 |
372 | −2.51 | −2.38 | −2.36 | −2.31 | −2.25 | −2.25 | −2.3 | −2.2 | −2.19 | −2.17 |
396 | −2.34 | −2.29 | −2.28 | −2.19 | −2.23 | −2.23 | −2.22 | −2.22 | −2.16 | −2.13 |
420 | −2.17 | −2.16 | −2.16 | −2.16 | −2.16 | −2.16 | −2.16 | −2.09 | −2.09 | −2.09 |
444 | −2.72 | −2.71 | −2.72 | −2.69 | −2.67 | −2.67 | −2.65 | −2.63 | −2.63 | −2.63 |
456 | −2.62 | −2.62 | −2.56 | −2.56 | −2.56 | −2.55 | −2.52 | −2.45 | −2.43 | −2.41 |
ADA132 | −2.3 | −2.23 | −2.27 | −2.26 | −2.23 | −2.05 | −2.16 | −2.16 | −2.04 | −1.98 |
308a4 | −2.16 | −2.11 | −1.97 | −2.16 | −2.14 | −2.14 | −2.14 | −2.04 | −1.95 | −1.84 |
308b4 | −2.09 | −1.9 | −2.08 | −2.01 | −1.98 | −2.05 | −1.94 | −1.89 | −1.84 | −1.8 |
360a | −2.35 | −2.23 | −2.23 | −2.17 | −2.11 | −2.22 | −2.19 | −2.17 | −2.09 | −2.02 |
stf114 | −1.9 | −1.88 | −1.87 | −1.85 | −1.78 | −1.83 | −1.76 | −1.74 | −1.82 | −1.67 |
CID_11332103 | −2.47 | −2.47 | −2.41 | −2.41 | −2.4 | −2.4 | −2.4 | −2.37 | −2.35 | −2.19 |
CID_11468612 | −2.54 | −2.53 | −2.51 | −2.51 | −2.5 | −2.49 | −2.48 | −2.47 | −2.47 | −2.46 |
CID_16146387 | −2.1 | −2.09 | −2.08 | −2.08 | −2.06 | −2.01 | −2 | −2.06 | −2.05 | −2.04 |
CID_16150529 | −2.14 | −2.1 | −2.09 | −2.06 | −2.04 | −2.02 | −1.98 | −1.98 | −1.97 | −1.97 |
CID_16156307 | −3.44 | −3.41 | −3.39 | −3.37 | −3.37 | −3.37 | −3.36 | −3.36 | −3.35 | −3.33 |
CID_71619159 | −1.74 | −1.67 | −1.73 | −1.72 | −1.57 | −1.57 | −1.56 | −1.53 | −1.49 | −1.48 |
CID_101218232 | −2.83 | −2.82 | −2.77 | −2.76 | −2.71 | −2.63 | −2.48 | −2.46 | −2.45 | −2.4 |
CID_101218236 | −3.13 | −3.09 | −3.07 | −3.06 | −3.05 | −2.98 | −2.93 | −2.92 | −2.91 | −2.79 |
CID_101382121 | −0.82 | −0.8 | −0.78 | −0.78 | −0.75 | −0.8 | −0.8 | −0.77 | −0.74 | −0.73 |
CID_10909337_C | −0.97 | −0.96 | −0.96 | −0.96 | −0.96 | −0.95 | −0.94 | −0.94 | −0.94 | −0.93 |
Name of Nanostructure | Maximum Binding Energy | Minimum Binding Energy | Average | SD | Binding Constant [Kmax] |
---|---|---|---|---|---|
360b | −2.66 | −2.25 | −2.47 | 0.12 | 89.1 |
372 | −2.51 | −2.17 | −2.29 | 0.10 | 69.2 |
396 | −2.34 | −2.13 | −2.23 | 0.06 | 51.9 |
420 | −2.17 | −2.09 | −2.14 | 0.03 | 39.0 |
444 | −2.72 | −2.63 | −2.67 | 0.03 | 98.6 |
456 | −2.62 | −2.41 | −2.53 | 0.07 | 83.3 |
ADA132 | −2.30 | −1.98 | −2.17 | 0.10 | 48.5 |
308a4 | −2.16 | −1.84 | −2.07 | 0.11 | 38.3 |
308b4 | −2.09 | −1.80 | −1.96 | 0.10 | 34.0 |
360a | −2.35 | −2.02 | −2.18 | 0.09 | 52.8 |
stf114 | −1.90 | −1.67 | −1.81 | 0.07 | 24.7 |
Name of Nanostructure | Maximum Binding Energy | Minimum Binding Energy | Average | SD | Binding Constant [Kmax] | Type |
---|---|---|---|---|---|---|
CID_11332103 | −2.47 | −2.19 | −2.39 | 0.07 | 64.6 | C67H14F3O4P |
CID_11468612 | −2.54 | −2.46 | −2.50 | 0.03 | 72.8 | C65H13O3P |
CID_16146387 | −2.10 | −2.00 | −2.06 | 0.03 | 34.6 | C67H16O2Si |
CID_16150529 | −2.14 | −1.97 | −2.04 | 0.06 | 37.0 | C70H20N2O2 |
CID_16156307 | −3.44 | −3.33 | −3.38 | 0.03 | 332.3 | C72H9F2OP |
CID_71619159 | −1.74 | −1.48 | −1.61 | 0.09 | 18.9 | C68H10O2 |
CID_101218232 | −2.83 | −2.40 | −2.63 | 0.16 | 118.7 | C63H4ClF3O |
CID_101218236 | −3.13 | −2.79 | −2.99 | 0.10 | 196.9 | C69H9Cl3O |
CID_101382121 | −0.82 | −0.73 | −0.78 | 0.03 | 4.0 | C62F6 |
CID_10909337 | −0.97 | −0.93 | −0.95 | 0.01 | 5.1 | C66HF12I |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szefler, B.; Czeleń, P. Docking of Cisplatin on Fullerene Derivatives and Some Cube Rhombellane Functionalized Homeomorphs. Symmetry 2019, 11, 874. https://doi.org/10.3390/sym11070874
Szefler B, Czeleń P. Docking of Cisplatin on Fullerene Derivatives and Some Cube Rhombellane Functionalized Homeomorphs. Symmetry. 2019; 11(7):874. https://doi.org/10.3390/sym11070874
Chicago/Turabian StyleSzefler, Beata, and Przemysław Czeleń. 2019. "Docking of Cisplatin on Fullerene Derivatives and Some Cube Rhombellane Functionalized Homeomorphs" Symmetry 11, no. 7: 874. https://doi.org/10.3390/sym11070874
APA StyleSzefler, B., & Czeleń, P. (2019). Docking of Cisplatin on Fullerene Derivatives and Some Cube Rhombellane Functionalized Homeomorphs. Symmetry, 11(7), 874. https://doi.org/10.3390/sym11070874