Generalized Weyl-Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States. Part II: The Perma-Concurrence Parameter
Abstract
:1. Introduction
2. Generalities
2.1. Generalized Weyl-Heisenberg Algebra
2.2. Dicke States
2.3. Majorana States
2.4. Procedures for Calculating Majorana States
3. The Perma-Concurrence
3.1. Expressions and Properties of the Perma-Concurrence
3.2. Procedures for Calculating the Perma-Concurrence
3.2.1. Example 1
3.2.2. Example 2
3.3. Perma-Cncurrence for ()
3.4. Perma-Concurrence for ()
3.5. Perma-Concurrence for ()
3.6. Perma-Concurrence for ()
4. Perma-Concurrence for Symmetric N-Qubit States of W Type
5. Perma-Concurrence for Symmetric N-Qubit States of Bell and GHZ Type
6. Concluding Remarks and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Braunstein, S.L.; Kimble, H.J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 1998, 80, 869–872. [Google Scholar] [CrossRef]
- Bouwmeester, D.; Pan, J.W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Nature 1997, 390, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 9–12 December 1984; IEEE: New York, NY, USA, 1984; p. 175. [Google Scholar]
- Vedral, V. The role of relative entropy in quantum information theory. Rev. Mod. Phys. 2002, 74, 197. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef]
- Gühne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–75. [Google Scholar] [CrossRef] [Green Version]
- Modi, K.; Brodutch, A.; Cable, H.; Paterek, T.; Vedral, V. Quantum discord and other measures of quantum correlation. Rev. Mod. Phys. 2012, 84, 1655. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 1998, 80, 2245. [Google Scholar] [CrossRef]
- Ollivier, H.; Zurek, W.H. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 2001, 88, 017901. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A Math. Gen. 2001, 34, 6899. [Google Scholar] [CrossRef]
- Coffman, V.; Kundu, J.; Wootters, W.K. Distributed entanglement. Phys. Rev. A 2000, 61, 052306. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.; Christensen, N. Potential multiparticle entanglement measure. Phys. Rev. A 2001, 63, 044301. [Google Scholar] [CrossRef] [Green Version]
- Li, D. Stochastic local operations and classical communication (SLOCC) and local unitary operations (LU) classifications of n qubits via ranks and singular values of the spin-flipping matrices. Quantum Inf. Process 2018, 17, 132. [Google Scholar] [CrossRef] [Green Version]
- López-Saldívar, J.A.; Castaños, O.; Nahmad-Achar, E.; López-Peña, R.; Man’ko, M.A.; Man’ko, V.I. Geometry and entanglement of two-qubit states in the quantum probabilistic representation. Entropy 2018, 20, 630. [Google Scholar] [CrossRef]
- Daoud, M.; Kibler, M.R. Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States. Entropy 2018, 20, 292. [Google Scholar] [CrossRef]
- Daoud, M.; Kibler, M.R. Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems. J. Phys. A Math. Theor. 2010, 43, 115303. [Google Scholar] [CrossRef]
- Daoud, M.; Kibler, M.R. Phase operators, phase states and vector phase states for SU3 and SU2,1. J. Math. Phys. 2011, 52, 082101. [Google Scholar] [CrossRef]
- Dicke, R. Coherence in spontaneous radiation processes. Phys. Rev. 1954, 93, 99. [Google Scholar] [CrossRef]
- Tóth, G. Detection of multipartite entanglement in the vicinity of symmetric Dicke states. J. Opt. Soc. Am. B 2007, 24, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, M.; Gühne, O. Entanglement criteria for Dicke states. J. Phys. A Math. Theor. 2013, 46, 385304. [Google Scholar] [CrossRef]
- Majorana, E. Atomi orientati in campo magnetico variabile. Nuovo Cimento 1932, 9, 43–50. [Google Scholar] [CrossRef]
- Bishop, C.A.; Byrd, M.S.; Wu, L.-A. Casimir invariants for systems undergoing collective motion. Phys. Rev. A 2011, 83, 062327. [Google Scholar] [CrossRef]
- Byrd, M.S. Implications of qudit superselection rules for the theory of decoherence-free subsystems. Phys. Rev. A 2006, 73, 032330. [Google Scholar] [CrossRef] [Green Version]
- Kolenderski, P. Geometry of pure states of N spin-J system. Open Syst. Inf. Dyn. 2010, 17, 107–119. [Google Scholar] [CrossRef]
- Dür, W.; Vidal, G.; Cirac, J.I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 2000, 62, 062314. [Google Scholar] [CrossRef] [Green Version]
C | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | |||||||
0 | 1 | 1 | ||||||
0 | 1 | 0 | 0 | 1 | ||||
0 | ||||||||
0 | ||||||||
0 | ||||||||
1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
0 | 0 | 1 | 1 | 0 |
0 | 0 | 1 | |||||
0 | 0 | 0 | |||||
0 | 0 | ||||||
0 | 1 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 3 | |||
0 | 0 | ||||||
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daoud, M.; Kibler, M.R. Generalized Weyl-Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States. Part II: The Perma-Concurrence Parameter. Symmetry 2019, 11, 875. https://doi.org/10.3390/sym11070875
Daoud M, Kibler MR. Generalized Weyl-Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States. Part II: The Perma-Concurrence Parameter. Symmetry. 2019; 11(7):875. https://doi.org/10.3390/sym11070875
Chicago/Turabian StyleDaoud, Mohammed, and Maurice R. Kibler. 2019. "Generalized Weyl-Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States. Part II: The Perma-Concurrence Parameter" Symmetry 11, no. 7: 875. https://doi.org/10.3390/sym11070875