Some Identities of Fully Degenerate Bernoulli Polynomials Associated with Degenerate Bernstein Polynomials
Abstract
:1. Introduction
2. Fully Degenerate Bernoulli and Bernstein Polynomials
- If , then we have
- If , then we have
3. Remark
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, T. Barnes’ type multiple degenerate Bernoulli and Euler polynomials. Appl. Math. Comput. 2015, 258, 556–564. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind. Sci. China Math. 2019, 62, 999–1028. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, H.Y.; Kim, D.J.; Kim, T. Identities of Symmetry for Type 2 Bernoulli and Euler Polynomials. Symmetry 2019, 11, 613. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. Degenerate Bernstein polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mater. 2018, 1–8. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. Correction to: Degenerate Bernstein polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mater. 2019, 1–2. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials. Mathematics 2019, 7, 47. [Google Scholar] [CrossRef]
- Kim, T. q-Volkenborn integration. Russ. J. Math. Phys. 2002, 9, 288–299. [Google Scholar]
- Kim, D.S.; Kim, T.; Mansour, T.; Seo, J.-J. Fully degenerate poly-Bernoulli polynomials with a q parameter. Filomat 2016, 30, 1029–1035. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A Note on polyexponential and unipoly functions. Russ. J. Math. Phys. 2019, 26, 40–49. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Extended Stirling numbers of the first kind associated with Daehee numbers and polynomials. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mater. 2019, 113, 1159–1171. [Google Scholar] [CrossRef]
- Pyo, S.-S.; Kim, T.; Rim, S.-H. Degenerate Daehee Numbers of the Third Kind. Mathematics 2018, 6, 239. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Seo, J.-J. Fully degenerate poly-Bernoulli numbers and polynomials. Open Math. 2016, 14, 545–556. [Google Scholar] [CrossRef]
- Kim, T.; Kwon, H.I.; Mansour, T.; Rim, S.-H. Symmetric identities for the fully degenerate Bernoulli polynomials and degenerate Euler polynomials under symmetric group of degree n. Util. Math. 2017, 103, 61–72. [Google Scholar]
- Araci, S.; Acikgoz, M. A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2012, 22, 399–406. [Google Scholar]
- Bayad, A.; Kim, T. Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys. 2011, 18, 133–143. [Google Scholar] [CrossRef]
- Choi, J. A note on p-adic integrals associated with Bernstein and q–Bernstein polynomials’. Adv. Stud. Contemp. Math. (Kyungshang) 2011, 21, 133–138. [Google Scholar]
- Kim, D.S.; Kim, T.; Jang, G.W.; Kwon, J. A note on degenerate Bernstein polynomials. J. Inequal. Appl. 2019, 2019, 129. [Google Scholar] [CrossRef]
- Kim, T.; Choi, J.; Kim, Y.H.; Ryoo, C.S. On the fermionic p-adic integral representation of Bernstein polynomials associated with Euler numbers and polynomials. J. Inequal. Appl. 2010, 1, 864247. [Google Scholar] [CrossRef]
- Kim, T.; Choi, J.; Kim, Y.H. On the k-dimensional generalization of q-Bernstein polynomials. Proc. Jangjeon Math. Soc. 2011, 14, 199–207. [Google Scholar]
- Kim, T. A note on q-Bernstein polynomials. Russ. J. Math. Phys. 2011, 18, 73–82. [Google Scholar] [CrossRef]
- Kim, T.; Kim, Y.H.; Bayad, A. A study on the p-adic q-integral representation on Z p associated with the weighted q-Bernstein and q-Bernoulli polynomials. J. Inequal. Appl. 2011, 513821. [Google Scholar] [CrossRef]
- Kim, T.; Lee, B.; Lee, S.-H.; Rim, S.-H. A note on q-Bernstein polynomials associated with p-adic integral on Zp. J. Comput. Anal. Appl. 2013, 15, 584–592. [Google Scholar]
- Kim, W.J.; Kim, D.S.; Kim, H.Y.; Kim, T. Some identities of degenerate Euler polynomials associated with Degenerate Bernstein polynomials. arXiv 2019, arXiv:1904.08592. [Google Scholar]
- Kurt, V. Some relation between the Bernstein polynomials and second kind Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2013, 23, 43–48. [Google Scholar]
- Ostrovska, S. On the q–Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2005, 11, 193–204. [Google Scholar]
- Park, J.-W.; Pak, H.K.; Rim, S.-H.; Kim, T.; Lee, S.-H. A note on the q-Bernoulli numbers and q–Bernstein polynomials. J. Comput. Anal. Appl. 2013, 15, 722–729. [Google Scholar]
- Siddiqui, M.A.; Agrawal, R.R.; Gupta, N. On a class of modified new Bernstein operators. Adv. Stud. Contemp. Math. (Kyungshang) 2014, 24, 97–107. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.G.; Kim, W.; Jang, L.-C. Some Identities of Fully Degenerate Bernoulli Polynomials Associated with Degenerate Bernstein Polynomials. Symmetry 2019, 11, 709. https://doi.org/10.3390/sym11050709
Lee JG, Kim W, Jang L-C. Some Identities of Fully Degenerate Bernoulli Polynomials Associated with Degenerate Bernstein Polynomials. Symmetry. 2019; 11(5):709. https://doi.org/10.3390/sym11050709
Chicago/Turabian StyleLee, Jeong Gon, Wonjoo Kim, and Lee-Chae Jang. 2019. "Some Identities of Fully Degenerate Bernoulli Polynomials Associated with Degenerate Bernstein Polynomials" Symmetry 11, no. 5: 709. https://doi.org/10.3390/sym11050709